
4/17/2014

1

Soft Computing Paradigm

Genetic Algorithm

What is Soft Computing?

• The idea behind soft computing is to model
cognitive behavior of human mind.

• Soft computing is foundation of conceptual
intelligence in machines.

• Unlike hard computing , Soft computing is
tolerant of imprecision, uncertainty, partial
truth, and approximation.

Hard Vs Soft Computing Paradigms
∙ Hard computing

− Based on the concept of precise modeling and analyzing
to yield accurate results.

− Works well for simple problems, but is bound by the
NP-Complete set.

∙ Soft computing
− Aims to surmount NP-complete problems.
− Uses inexact methods to give useful but inexact answers

to intractable problems.
− Represents a significant paradigm shift in the aims of

computing - a shift which reflects the human mind.
− Tolerant to imprecision, uncertainty, partial truth, and

approximation.
− Well suited for real world problems where ideal models

are not available.

Difference b /w Soft and Hard 

Computing
Hard Computing Soft Computing

Conventional computing requires a

precisely stated analytical model.

Soft computing is tolerant of

imprecision.

Often requires a lot of computation time. Can solve some real world problems in

reasonably less time.

Not suited for real world problems for

which ideal model is not present.

Suitable for real world problems.

It requires full truth Can work with partial truth

It is precise and accurate Imprecise.

High cost for solution Low cost for solution



4/17/2014

2

Unique Features of Soft Computing

• Soft Computing is an approach for constructing 
systems which are
− computationally intelligent,

− possess human like expertise in particular domain,

− can adapt to the changing environment and can learn
to do better

− can explain their decisions

Components of Soft Computing

∙ Components of soft computing include:
− Fuzzy Logic (FL)

− Evolutionary Computation (EC) - based on the
origin of the species
�Genetic Algorithm

�Swarm Intelligence

�Ant Colony Optimizations

− Neural Network (NN)

− Machine Learning (ML) 

Evolutionary Computation

Genetic and Swarm Computing

Evolutionary Computation -EC

∙ General term for several computational
techniquesinspired by biological evolution

∙ Mostly involve meta-heuristic optimization
algorithms such as:

− Evolutionary algorithms

� comprising genetic algorithms, evolutionary programming, etc)

−Swarm intelligence 

� comprising ant colony optimization and particle swarm 

optimization)



4/17/2014

3

Advantages of EC

• Conceptual Simplicity

• Broad Applicability

• Hybridization with Other Methods

• Parallelism

• Robust to Dynamic Changes

• Solves Problems that have no Solutions

Genetic Algorithms

• Genetic algorithms are inspired by Darwin's theory of

natural evolution.

• In the natural world, organisms that are poorly suited for

an environment die off, while those well-suited, prosper.

• Genetic algorithms search the space of individuals for

good candidates.

• The chance of an individual's being selected is proportional

to the amount by which its fitness is greater or less than its

competitors' fitness.

Contd..

• Algorithm begins with aset of initial solutions (represented by
set ofchromosomes) calledpopulation.

• A chromosomeis a string of elements calledgenes.
• Solutions from one population are taken and are used to form a

new population by generating offsprings.
• New population is formed using old population and offspring

based on their fitness value.
• Promising candidates are kept and allowed to reproduce
• This is motivated by a hope, that the new population will be

better than the old one.
• Genetic algorithms are broadly applicable and have the

advantage that they require little knowledge encoded in the
system.



4/17/2014

4

Outline of the Basic Genetic Algorithm

• [Start] Generate random population ofn chromosomes
(suitable solutions for the problem).

• [Fitness] Evaluate the fitnessf(x) of each chromosomex in the
population.

• Repeat until terminating condition is satisfied
− [Selection] Select two parent chromosomes from a

population according to their fitness (the better fitness, the
bigger chance to be selected).

− [Crossover] Crossover the parents to form new offsprings
(children). If no crossover was performed, offspring is
the exact copy of parents.

− [Mutation ] Mutate new offspring at selected position(s) in
chromosome).

− [Accepting] Generate new population by placing new
offsprings.

• Return the best solution in current population

Issues involved

• How to create chromosomes and what
type of encoding to choose?

• How to perform Crossover and
Mutation, the two basic operators of
GA?

• How to select parents for crossover?

Termination of Loop

• Reaching some (known/hoped for) fitness.

• Reaching some maximum allowed
number of generations.

• Reaching some minimum level of
diversity.

• Reaching some specified number of
generations without fitness improvement.

Advantages and Disadvantages of GA

• Applicable when little knowledge is encoded in
the system.

• Effective way of finding a reasonable solution to a
complex problem quickly.

• NP-complete problems can be solved in efficient
way.

• Parallelism and easy implementation is an
advantage.

• However, they give very poor performance on
some problems as might be expected from
knowledge-poor approaches.



4/17/2014

5

Criteria for GA Approaches

• Completeness: Any solution should have its
encoding

• Non redundancy: Codes and solutions should
correspond one to one

• Soundness: Any code (produced by genetic
operators) should have its corresponding solution

• Characteristic perseverance: Offspring should
inherit useful characteristics from parents.

Contd…

• The following questions need to be answered:
� How to create chromosomes and what type of encoding to choose?
� How to perform Crossover and Mutation, the two basic operators of GA?
� How to select parents for crossover?

• Representation of GA :Binary strings
• Recombination operator :N-point or uniform
• Mutation operator :Bitwise bit-flipping with

fixed probability
• Parent selection:Fitness-Proportionate
• Survivor selection:All children replace parents
• Emphasis on crossover
• Speciality:

• Represents the requirements that the population
should adapt to
– quality function orobjective function

• The fitness is calculated by first decoding the
chromosome and then the evaluating the objective
function.

• Fitness function is and indicator of how close the
chromosome is to the optimal solution

• Typically we talk about fitness being maximised
– Some problems may be best posed as minimisation

problems, but conversion is trivial

Evaluation (Fitness) Function

• Depending on their finesses -Assigns variable probabilities of
individuals acting as parents

• Usually probabilistic

– high quality solutions more likely to become
parents than low quality

– but not guaranteed

– even the worst in current population usually has
non-zero probability of becoming a parent

• Thisstochastic nature can aid escape from local optima

Parent Selection Mechanism



4/17/2014

6

• Most EAs use fixed population size so need a way of
going from (parents + offspring) to next generation

• Often deterministic
– Fitness based : e.g., rank parents + offspring and take best

– Age based: make as many offspring as parents and delete
all parents

• Sometimes do combination of above two

Survivor Selection-Replacement Encoding of a Chromosome 

• A chromosome should contain information about solution

that it represents.

• The commonly used way of encoding is a binary string.

Chromosome 1: 1101100100110110

Chromosome 2: 1101111000011110

• Each bit in the string represents some characteristics of the

solution.

• There are many other ways of encoding. The encoding

depends mainly on the problem.

Crossover

• Crossover operates on selected genes

from parent chromosomes and creates

new offspring.

• The simplest way is to choose some

crossover point randomly

•copy everything before this point from the

first parent and then copy everything after the

crossover point from the other parent.

Contd…

• Example: ( | is the crossover point):
Chromosome 1 11011 | 00100110110 Chromosome 

2 11011 | 11000011110 Offspring 1
11011 | 11000011110

Offspring 2 11011 | 00100110110

• There are other ways to make crossover, for example we can
choose more crossover points.

• Crossover can be quite complicated and depends mainly on
the encoding of chromosomes.

• Specific crossover made for a specific problem can improve
performance of the genetic algorithm.



4/17/2014

7

Mutation
• Mutation operation randomly changes the offspring resulted

from crossover.
• Mutation is intended to prevent falling of all solutions in the

population into a local optimum of the problem.
• In case of binary encoding we can switch a few randomly

chosen bits from 1 to 0 or from 0 to 1.
• Mutation can be then illustrated as follows:

Original offspring 1 1101111000011110
Original offspring 2 1101100100110110
Mutated offspring 1 1100111000011110
Mutated offspring 2 1101101100110100

• The technique of mutation (as well as crossover) depends
mainly on the encoding of chromosomes.

Crossover and Mutation Schemes

• As already mentioned, crossover and
mutation are two basic operations of GA.

• Performance of GA depends on the encoding
and also on the problem.

• There are several encoding schemes to
perform crossover and mutation.

Binary Encoding  Schemes

Binary Encoding
1.  Crossover

� Single point crossover:
• one crossover point is selected, 

• binary string from the beginning of the chromosome to the 
crossover point is copied from the first parent, 

• the rest is copied from the other parent 

11001011+11011111= 11001111

Contd…

� Two point crossover:
• two crossover points are selected,

• binary string from the beginning of the chromosome to
the first crossover point is copied from the first parent,

• the part from the first to the second crossover point is
copied from the other parent and

• the rest is copied from the first parent again

11001001+ 11011111 = 11011101



4/17/2014

8

Contd…

� Arithmetic crossover:  Arithmetic operation is 
performed to make a new offspring 

11001011 + 11011111 = 11001001 (AND) 

� Uniform crossover: bits are randomly copied from the 
first and second parent 

11101010 + 11010101 = 11010011

2.  Mutation
Bit inversion:  selected bits are inverted 

11010011 => 11110010

Permutation Encoding

1.  Crossover : Single point crossover -
• one crossover point is selected, 
• the genes are copied from the first parent till the crossover 

point, then 
• the other parent is scanned and if the gene is not yet copied 

in the offspring, it is added
• Note: there are more ways to produce the rest after 

crossover point
(1 2 3 4 56 7 8 9) + (4 5 3 6 8 9 72 1) = 

(1 2 3 4 56 8 9 7)

2.  Mutation: Order changing -
• two numbers are selected and exchanged 

(1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)

Value Encoding
1.  Crossover

All crossovers methods frombinary encoding can be used 

2.  Mutation
Adding (for real value encoding) - a small number is added to 
(or subtracted from) selected values 

(1.29 5.68 2.864.115.55) => (1.29 5.68 2.734.225.55) 

Tree Encoding
1.  Crossover

Tree crossover- one crossover point is selected in both parents, 
and   the parts below crossover points are exchanged to produce 
new offspring 

2.  Mutation
Changing operator, number- selected nodes are changed 

Advantages and Disadvantages of GA

• Applicable when little knowledge is encoded in
the system.

• Effective way of finding a reasonable solution to a
complex problem quickly.

• NP-complete problems can be solved in efficient
way.

• Parallelism and easy implementation is an
advantage.

• However, they give very poor performance on
some problems as might be expected from
knowledge-poor approaches.



4/17/2014

9

Contd..

• There are NP-complete problems that can not be solved
algorithmically in efficient way.

• NP stands for nondeterministic polynomial and it means
that it is possible to guess the solution and then check it in
polynomial time.

• If we have some mechanism to guess a solution, then we
would be able to find a solution in some reasonable or
polynomial time .

• The characteristic for NP-problems is that algorithm is
usually O(2n) and it is not usable when n is large.

• For such problems, GA works well.
• But the disadvantage of GAs is in their computational

time.

• They can be slower than some other methods.

• Some of the problems are listed below
� Choosing encoding and fitness function can be difficult.

� GAs may have a tendency to converge towards local
optima or even arbitrary points rather than the global
optimum in many problems..

• GAs cannot effectively solve problems in which
the only fitness measure is right/wrong, as there is
no way to converge on the solution.

• In these cases, a random search may find a
solution as quickly as a GA.

GA Applications

• Control
• Design
• Scheduling
• Robotics
• Machine Learning
• Signal Processing
• Game Playing
• Combinatorial Optimization

More Specific Applications of GA

• TSP and sequence scheduling

• Finding shape of protein molecules

• Strategy planning

• Nonlinear dynamical systems - predicting, data analysis

• Designing neural networks, both architecture and

weights

• Evolving LISP programs (genetic programming)



4/17/2014

10

Genetic programming 

• Genetic programming starts with randomly
created computer programs and evolves programs
progressively over a series of generations similar
to genetic algorithm.

• Furthermore, genetic programming is useful in
finding solutions where the variables are
constantly changing.

• A population of random trees representing
programs is constructed.

• The genetic operators (crossover, reproduction, etc.) are
performed on these trees.

• In order to create these individuals, two distinct sets are
defined:
� theterminal set T, and

� thefunction set F.

• The terminal set includes variables, as well as constants.

• All the functions and terminals must be compatible (i.e.
can pass information between each other).

• Random tree is generated until all the branches end in
terminals.

• To generate a population of programs, just generate as
many trees as needed.

The steps required in GP

• Initially generate a population of random compositions of
the functions and terminals of the problem (computer
programs).

• Execute each program in the population and assign it a
fitness value according to how well it solves the problem.

• Create a new population of computer programs.
• Copy the best existing programs.
• Create new computer programs by mutation.
• Create new computer programs by crossover.
• The best computer program that appeared in any

generation is designated as the result of genetic
programming.

Coding Scheme

• In tree encoding every chromosome is a tree of
some objects, such as functions or commands in
programming language.

• LISP programming language is often used for this,
as programs in LISP are represented in this form
of list and can be easily parsed as a tree.

• The crossover and mutation operations can be
done easily.



4/17/2014

11

Chromosome 
  x + (10 – y) � (plus x (minus 10  y)) 
 
                             plus                                               
 
              x                          minus 
 
 
                               10                         y 

 

Fitness Function

• The most difficult and important concept of GP is
the fitness function.

• The fitness function determines how well a
program is able to solve the problem.

• It varies greatly from one type of program to the
next.

• For example, if one were to create a genetic
program to set the time of a clock, the fitness
function would simply be the amount of time that
the clock is wrong.

Crossover Operation on two parents 
 

Chromosome A Chromosome B 
  x + (10 – y) � (plus x (minus 10  y)) 
  
                            plus                                              
 
              x                          minus 
 
 
                               10                         y 

(x + 5) * y � (mult (plus x 5)  y) 
  
                           mult                                              
 
              plus                          y 
 
 
    x                         5                           

 

Offspring 1 Offspring 2 
x + (y + 5) � (plus x (plus  y  5)) 
  
                            plus                                              
 
              x                              plus 
 
 
                               y                       5 

(10 – y) * x � (mult (minus 10 y) x) 
  
                           mult                                              
 
              minus                   x 
 
 
     10                       y 

 



4/17/2014

12

Crossover Operation with identical parents 
 

Chromosome A Chromosome B 
x * y + (4 – y) � (plus (mult x y) (minus 4  y)) 
  
                            plus                                               
 
              mult                        minus 
 
  
 x                         y   4                        y 

x * y + (4 – y) � (plus (mult x y) 
(minus 4 y)) 
   
                            plus                                              
 
              mult                        minus 
 
  
 x                         y   4                        y 

Offspring 1 Offspring 2 
x *y + x * y � (plus (mult x y) (mult x y))) 
  
                            plus                                               
 
              mult                       mult 
 
  
 x                            y    x                      y 

(4 – y) + (4 – y) � (plus (minus 4 y) 
(minus 4  y)) 
  
                            plus                                              
 
             minus                      minus 
 
  
4                             y   4                     y 

 

Advantages of genetic programming over genetic algorithm is 
that identical parents can yield different offsprings, while in 
genetic algorithms identical parents would yield identical 
offspring. 

Mutation 
Chromosome 

x * y + (4 – y) � (plus (mult x y) (minus 4  y)) 
  
                            plus                                               
 
              mult                        minus 
 
  
 x                         y   4                        y 

 Mutated chromosome with variable ‘y’ replaced by variable ‘x’ 
x * y + (4 – x) � (plus (mult x y) (minus 4  x)) 
  
                            plus                                               
 
              mult                        minus 
 
  
 x                         y   4                        x 
 Mutated chromosome with function ‘mult’ replaced by function ‘plus’ 
x * y + (4 – y) � (plus (mult x y) (minus 4  y)) 
  
                            plus                                               
 
            plus                       minus 
 
  
 x                         y   4                        x 

 


