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Clustering 

Definition

A form of unsupervised learning, where we identify 
groups in feature space for an unlabeled sample set

• Define class regions in feature space using unlabeled 
data

• Note:  the classes identified are abstract, in the sense 
that we obtain ‘cluster 0’ ... ‘cluster n’ as our classes 
(e.g. clustering MNIST digits, we may not get 10 
clusters)
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Applications

Clustering Applications Include:

• Data reduction: represent samples by their 
associated cluster 

• Hypothesis generation

• Discover possible patterns in the data: validate 
on other data sets

• Hypothesis testing

• Test assumed patterns in data

• Prediction based on groups

• e.g. selecting medication for a patient using 
clusters of previous patients and their reactions 
to medication for a given disease 3



Kuncheva: 
Supervised vs. 
Unsupervised 
Classification 



A Simple Example

Assume Class Distributions Known to be Normal

Can define clusters by mean and covariance matrix

However...

We may need more information to cluster well 

• Many different distributions can share a mean 
and covariance matrix 

• ....number of clusters?
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FIGURE 10.6. These four data sets have identical statistics up to second-order—that
is, the same mean ! and covariance ". In such cases it is important to include in the
model more parameters to represent the structure more completely. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.



Steps for Clustering
1. Feature Selection

• Ideal: small number of features with little redundancy 

2. Similarity (or Proximity) Measure

• Measure of similarity or dissimilarity

3. Clustering Criterion

• Determine how distance patterns determine cluster likelihood (e.g. 
preferring circular to elongated clusters)

4. Clustering Algorithm

• Search method used with the clustering criterion to identify clusters

5. Validation of Results

• Using appropriate tests (e.g. statistical)

6. Interpretation of Results

• Domain expert interprets clusters (clusters are subjective) 7

Red: defining 
‘cluster space’



Choosing a Similarity Measure
Most Common: Euclidean Distance

Roughly speaking, want distance between samples in a cluster 
to be smaller than the distance between samples in different 
clusters

• Example (next slide): define clusters by a maximum 
distance d0 between a point and a point in a cluster

• Rescaling features can be useful (transform the space) 

• Unfortunately, normalizing data (e.g. by setting 
features to zero mean, unit variance) may eliminate  
subclasses 

• One might also choose to rotate axes so they 
coincide with eigenvectors of the covariance 
matrix (i.e. apply PCA)
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FIGURE 10.7. The distance threshold affects the number and size of clusters in similarity based clustering
methods. For three different values of distance d0, lines are drawn between points closer than d0—the smaller
the value of d0, the smaller and more numerous the clusters. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 10.8. Scaling axes affects the clusters in a minimum distance cluster method.
The original data and minimum-distance clusters are shown in the upper left; points in
one cluster are shown in red, while the others are shown in gray. When the vertical axis
is expanded by a factor of 2.0 and the horizontal axis shrunk by a factor of 0.5, the
clustering is altered (as shown at the right). Alternatively, if the vertical axis is shrunk by
a factor of 0.5 and the horizontal axis is expanded by a factor of 2.0, smaller more nu-
merous clusters result (shown at the bottom). In both these scaled cases, the assignment
of points to clusters differ from that in the original space. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 10.9. If the data fall into well-separated clusters (left), normalization by scaling
for unit variance for the full data may reduce the separation, and hence be undesirable
(right). Such a normalization may in fact be appropriate if the full data set arises from a
single fundamental process (with noise), but inappropriate if there are several different
processes, as shown here. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



Other Similarity Measures
Minkowski Metric (Dissimilarity)

Change the exponent q: 

• q = 1: Manhattan (city-block) distance

• q = 2: Euclidean distance (only form invariant to 
translation and rotation in feature space)

Cosine Similarity

Characterizes similarity by the cosine of the angle 
between two feature vectors (in [0,1])

• Ratio of inner product to vector magnitude product

• Invariant to rotations and dilation (not translation) 12
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More on Cosine Similarity

If features binary-valued:

• Inner product is sum of shared feature values

• Product of magnitudes is geometric mean of 
number of attributes in the two vectors

Variations 

Frequently used for Information Retrieval

• Ratio of shared attributes (identical lengths):

• Tanimoto distance: ratio of shared attributes to 
attributes in x or x’
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Cosine Similarity: Tag Sets for YouTube 
Videos (Example by K. Kluever)

Let A and B be binary vectors of the same 
length (represent all tags in A&B)

14

While there are often additional words to be obtained from
a video’s title [7], in our preliminary user study we found
that adding titles did not substantially increase the usability
of the system (e.g. we observed a decrease in security of 5%
and only an increase in usability of 0.3% relative to matching
against only author-supplied tags). In addition, we could not
estimate the security impact of adding title words using our
tag frequencies (which are calculated over tag space, not title
space), and so we decided to not allow title words.

Sorting Related Videos by Cosine Similarity
To select tags from those videos that have the most similar
tag set to the challenge video, we performed a sort using
the cosine similarity of the tags on related videos and the
tags on the challenge video. The cosine similarity metric is
a standard similarity metric used in Information Retrieval to
compare text documents [20]. The cosine similarity between
two vectors A and B can be easily computed as follows:

SIM(A, B) = cos θ =
A · B
‖A‖‖B‖

The dot product and product of magnitudes are:

A · B =
n∑

i=1

aibi

‖A‖‖B‖ =

√√√√
n∑

i=1

(ai)2

√√√√
n∑

i=1

(bi)2

In our case, A and B are binary tag occurrences vectors (i.e.,
they only contain 1’s and 0’s) over the union of the tags in
both videos. Therefore, the dot product simply reduces to
the size intersection of the two tag sets (i.e., |At ∩ Rt|) and
the product of the magnitudes reduces to the square root of
the number of tags in the first tag set times the square root of
the number of tags in the second tag set (i.e.,

√
|At|

√
|Rt|).

Therefore, the cosine similarity between a set of author tags
and a set of related tags can easily be computed as:

cos θ =
|At ∩Rt|√
|At|

√
|Rt|

Tag Set Occ. Vector dog puppy funny cat
At A 1 1 1 0
Rt B 1 1 0 1

Table 1. Example of a tag occurrence table.

Consider an example where At = {dog, puppy, funny}
and Rt = {dog, puppy, cat}. We can build a simple ta-
ble which corresponds to the tag occurrence over the union
of both tag sets (see Table 1). Reading row-wise from this
table, the tag occurrence vectors for At and Rt are A =
{1, 1, 1, 0} and B = {1, 1, 0, 1}, respectively. Next, we
compute the dot product:

A · B = (1 ∗ 1) + (1 ∗ 1) + (1 ∗ 0) + (0 ∗ 1) = 2

The product of the magnitudes can also easily be computed:

‖A‖‖B‖ =
√

3
√

3 = 3

Thus, the cosine similarity of the two videos is 2
3 = 0.6̄.

Adding Related Tags
Once the related videos are sorted in decreasing cosine sim-
ilarity order, we introduce tags from the related videos into
the ground truth. The maximum number of characters al-
lowed in a YouTube tag set is 120. In the worst case, the
tag set could contain 60 unique words (each word would
be a single character), separated by spaces. The maximum
number of related videos which YouTube provides is 100.
Therefore, adding all of the related tags could potentially
add up to 6000 new tags. We chose to limit the upper bound
by adding up to n additional unique tags from the related
videos (sorted in decreasing cosine similarity order). Given
a challenge video v, a set of related videos R, and a num-
ber of related tags to generated n, the following algorithm
generates up to n related tags.

RELATEDTAGS(A, R, n)

1. Create an empty set, Z ← ∅.
2. Sort related videos R in decreasing cosine similarity order

of their tag sets relative to the tag set A (for a challenge
video v).

3. For each related video r ∈ R:
(a) If the number of new tags on the related video r is

≤ n− |Z|, add them all to Z.
(b) Otherwise, while the related video r has tags and

while |Z| < n:
i. Randomly remove a tag from the remaining tags

on the related video r, and add this tag to Z.
4. Return Z.

This technique will introduce up to n additional tags to the
ground truth set. In the case where we have already gener-
ated n − b related tags and the next related video contains
more than b new, unique tags, we cannot add all of them
without exceeding our upper bound of n tags. For example,
consider the case in which we wish to generate 100 addi-
tional tags (n = 100) and we have already generated 99 tags.
If the next related video has 4 new tags, we cannot include
all of these in the new tag set, and so we randomly pick one
to avoid bias.

Rejecting Frequent Tags
Security against frequency-based attacks (an attack where
the three most frequent tags are always submitted) is main-
tained through the parameters F and t in the challenge gen-
erating function VIDEOCAPTCHA (see earlier in this sec-
tion). F is a tag frequency distribution (see Figure 2) and
t is a frequency rejection threshold. During challenge gener-
ation, after author-supplied tags and tags from related videos
have been added to the ground-truth set, tags with a fre-
quency greater than or equal to t in F are removed.

REJECTFREQUENTTAGS(S, F , t)
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Here SIM(A, B) is 2/3.



Additional Similarity Metrics

Theodoridis Text

Defines a large number of alternative 
distance metrics, including:

• Hamming distance: number of locations where 
two vectors (usually bit vectors) disagree

• Correlation coefficient

• Weighted distances...
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Criterion Functions for Clustering

Criterion Function

Quantifies ‘quality’ of a set of clusters

• Clustering task: partition data set D into c disjoint 
sets D1 ... Dc

• Choose partition maximizing the criterion function

16
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Criterion: Sum of Squared Error

Measures total squared ‘error’ incurred by choice of 
cluster centers (cluster means)

‘Optimal’ Clustering

Minimizes this quantity

Issues

• Well suited when clusters compact and well-separated

• Different # points in each cluster can lead to large 
clusters being split ‘unnaturally’ (next slide)

• Sensitive to outliers
17



Je = large

Je = small

FIGURE 10.10. When two natural groupings have very different numbers of points, the
clusters minimizing a sum-squared-error criterion Je of Eq. 54 may not reveal the true
underlying structure. Here the criterion is smaller for the two clusters at the bottom than
for the more natural clustering at the top. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



Related Criteria: Min Variance

An Equivalent Formulation for SSE

   : mean squared distance between points in cluster i 
(variance)

• Alternative Criterions: use median, maximum, other 
descriptive statistic on distance for 

Variation: Using Similarity (e.g. Tanimoto)

s may be any similarity function (in this case, maximize)
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Criterion: Scatter Matrix-Based

Minimize Trace of Sw (within-class)

Equivalent to SSE!

Recall that total scatter is the sum of within 
and between-class scatter (Sm = Sw + Sb). 
This means that by minimizing the trace of 
Sw, we also maximize Sb (as Sm is fixed):
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Scatter-Based Criterions, Cont’d

Determinant Criterion

Roughly measures square of the scattering 
volume; proportional to product of variances 
in principal axes (minimize!)

• Minimum error partition will not change with 
axis scaling, unlike SSE
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Scatter-Based: Invariant Criteria

Invariant Criteria (Eigenvalue-based)

Eigenvalues: measure ratio of between to within-
cluster scatter in direction of eigenvectors 
(maximize!) 

• Trace of a matrix is sum of eigenvalues (here d is 
length of feature vector)

• Eigenvalues are invariant under non-singular linear 
transformations (rotations, translations, scaling, etc.)
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Clustering with a Criterion

Choosing Criterion

Creates a well-defined problem

• Define clusters so as to maximize the 
criterion function 

• A search problem

• Brute force solution: enumerate partitions 
of the training set, select the partition with 
maximum criterion value
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Comparison: Scatter-Based Criteria
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Hierarchical Clustering

Motivation

Capture similarity/distance relationships 
between sub-groups and samples within the 
chosen clusters

• Common in scientific taxonomies (e.g. 
biology) 

• Can operate bottom up (individual samples to 
clusters, or agglomerative clustering) or top-
down (single cluster to individual samples, or 
divisive clustering)

25



Agglomerative Hierarchical Clustering 
Problem: Given n samples, we want c clusters

One solution: Create a sequence of partitions (clusterings)

• First partition, k = 1:   n clusters (one cluster per sample)

• Second partition, k = 2:   n-1 clusters

• Continue reducing the number of clusters by one: merge 2 closest 
clusters (a cluster may be a single sample) at each step k until...

• Goal partition: k = n - c + 1:  c clusters

• Done; but if we’re curious, we can continue on until the...

• ....Final partition, k = n:  one cluster

Result

All samples and sub-clusters organized into a tree (a dendrogram)

• Often show cluster similarity for a dendrogram diagram (Y-axis)

If as stated above whenever two samples share a cluster they remain in 
a cluster at higher levels, we have a hierarchical clustering
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FIGURE 10.12. A set or Venn diagram representation of two-dimensional data (which
was used in the dendrogram of Fig. 10.11) reveals the hierarchical structure but not the
quantitative distances between clusters. The levels are numbered by k, in red. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 10.11. A dendrogram can represent the results of hierarchical clustering algo-
rithms. The vertical axis shows a generalized measure of similarity among clusters. Here,
at level 1 all eight points lie in singleton clusters; each point in a cluster is highly similar
to itself, of course. Points x6 and x7 happen to be the most similar, and are merged at
level 2, and so forth. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



Distance Measures

Listed Above:

Minimum, maximum and average inter-sample 
distance (samples for clusters i,j: Di , Dj)

Difference in cluster means (mi, mj)
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Nearest-Neighbor Algorithm

Also Known as “Single-Linkage” Algorithm

Agglomerative hierarchical clustering using dmin 

• Two nearest neighbors in separate clusters determine clusters merged 
at each step 

• If we continue until k = n (c = 1), produce a minimum spanning tree 
(similar to Kruskal’s alg.)

• MST: Path exists between all node (sample) pairs, sum of edge 
costs minimum for all spanning trees

Issues

Sensitive to noise and slight changes in position of data points (chaining effect)

• Example: next slide
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FIGURE 10.13. Two Gaussians were used to generate two-dimensional samples, shown
in pink and black. The nearest-neighbor clustering algorithm gives two clusters that well
approximate the generating Gaussians (left). If, however, another particular sample is
generated (circled red point at the right) and the procedure is restarted, the clusters do
not well approximate the Gaussians. This illustrates how the algorithm is sensitive to
the details of the samples. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Farthest-Neighbor Algorithm

Agglomerative hierarchical clustering using dmax 

• Clusters with the smallest maximum distance between two 
points are merged at each step

• Goal: minimal increase to largest cluster diameter at 
each iteration (discourages elongated clusters)

• Known as ‘Complete-Linkage Algorithm’ if terminated when 
distance between nearest clusters exceeds a given threshold 
distance

Issues

Works well for compact and roughly equal in size; with 
elongated clusters, result can be meaningless 31



dmax = large dmax = small

FIGURE 10.14. The farthest-neighbor clustering algorithm uses the separation between
the most distant points as a criterion for cluster membership. If this distance is set very
large, then all points lie in the same cluster. In the case shown at the left, a fairly large
dmax leads to three clusters; a smaller dmax gives four clusters, as shown at the right. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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Using Mean, Avg Distances

Reduces Sensitivity to Outliers

Mean less expensive to compute than avg, 
min, max (each require ni * nj distances)
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Stepwise Optimal Hierarchical Clustering

Problem

None of the agglomerative methods discussed so far directly 
minimize a specific criterion function

Modified Agglomerative Algorithm:

For k = 1 to (n - c + 1)

• Find clusters whose merger changes criterion least, Di and Dj

• Merge Di and Dj

Example: Minimal increase in SSE (Je)

de defines the cluster pair that increases Je as little as possible. May not 
minimize SSE, but often good starting point 

• prefers merging single elements or small with large clusters vs. 
merging medium-size clusters 34
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k-Means Clustering
k-Means Algorithm

For a number of clusters k:

1. Choose k data points at random 

2. Assign all data points to closest of the k cluster centers

3. Re-compute k cluster centers as the mean vector of each cluster

• If cluster centers do not change, stop

• Else, goto 2

Complexity

O(ndcT) - T iterations,  d features, n points, c clusters, in practice 
usually T << n  (much fewer than n iterations) 

Note: means tend to move minimizing squared error criterion
35
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FIGURE 10.2. The k-means clustering procedure is a form of stochastic hill climbing
in the log-likelihood function. The contours represent equal log-likelihood values for
the one-dimensional data in Fig. 10.1. The dots indicate parameter values after different
iterations of the k-means algorithm. Six of the starting points shown lead to local max-
ima, whereas two (i.e., µ1(0) = µ2(0)) lead to a saddle point near ! = 0. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 10.1. (Above) The source mixture density used to generate sample data, and
two maximum-likelihood estimates based on the data in the table. (Bottom) Log-
likelihood of a mixture model consisting of two univariate Gaussians as a function of
their means, for the data in the table. Trajectories for the iterative maximum-likelihood
estimation of the means of a two-Gaussian mixture model based on the data are shown
as red lines. Two local optima (with log-likelihoods −52.2 and −56.7) correspond to the
two density estimates shown above. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 10.3. Trajectories for the means of the k-means clustering procedure applied to
two-dimensional data. The final Voronoi tesselation (for classification) is also shown—
the means correspond to the “centers” of the Voronoi cells. In this case, convergence is
obtained in three iterations. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



Fuzzy k-means
Basic Idea

Allow every point to have a probability of 
membership in every cluster.  The criterion (cost 
function) minimized is:

Theta is the membership function parameter set. 
b (‘blending’) is a free parameter:

• b = 0: Sum of squared error criterion (one cluster 
per data point)

• b > 1: each pattern may belong to multiple clusters
39

Jfuz =
c∑

i=1

n∑

j=1

[P̂ (ωi|xj, Θ̂)]b||xj − µi||2
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Fuzzy k-Mean Clustering Algorithm

Algorithm

1. Compute probability of each class for every point in the 
training set (uniform probability: equal likelihood in each 
cluster)

2. Recompute means using expression at top-left

3. Recompute probability of each class for each point using 
expression at top right

• If change in means and membership probabilities for 
points is small, stop

• Else goto 2
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FIGURE 10.4. At each iteration of the fuzzy k-means clustering algorithm, the prob-
ability of category memberships for each point are adjusted according to Eqs. 32 and
33 (here b = 2). While most points have nonnegligible memberships in two or three
clusters, we nevertheless draw the boundary of a Voronoi tesselation to illustrate the
progress of the algorithm. After four iterations, the algorithm has converged to the red
cluster centers and associated Voronoi tesselation. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.



Fuzzy k-means, Cont’d

Convergence Properties

Sometimes fuzzy k-means improves 
convergence over classical k-means

However, probability of cluster membership 
depends on the number of clusters; can lead 
to problems if poor choice of k is made
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Cluster Validity
So far...

We’ve assumed that we know the number of clusters

When number of clusters isn’t known

We can try a clustering procedure using c=1, c=2, 
etc., and making note of sudden decreases in the 
error criterion (e.g. SSE)

More formal: statistical tests, however problem of 
testing cluster validity is unsolved 

• DHS: Section 10.10 presents a statistical test 
centered around testing the null hypothesis of 
having c clusters, by comparing with c+1 
clusters
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