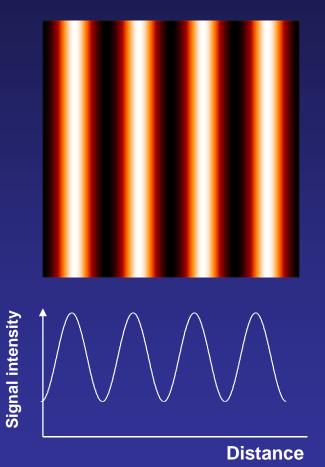
**G-Class of Medical Image Information** 

## Fourier Transform ||

## **September 22, 2009**

Shigehiko Katsuragawa, Ph.D.

## Wave propagating in Real Domain

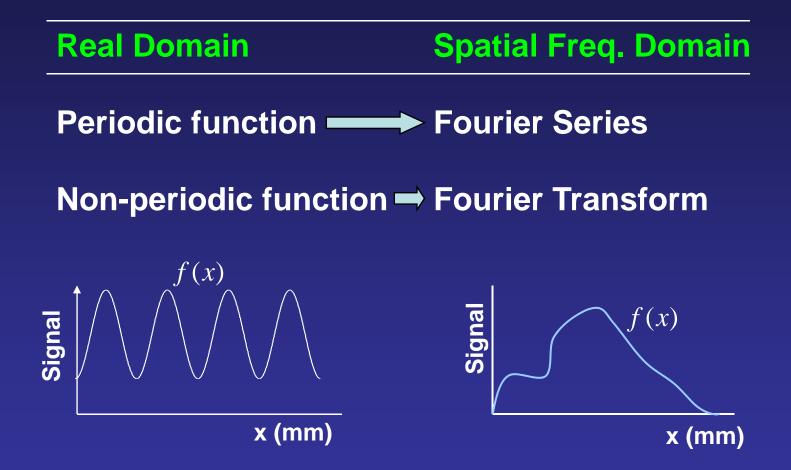


Signal in an image: Optical density on radiograph Brightness on display monitor

Spatial Frequency is defined as the number of waves in a unit length

Distance (unit of spatial freq.): mm (cycles/mm) cm (cycles/cm)

## Expression of Function in Spatial Freq. Domain



#### Medical images are 2D non-periodic functions.

## **Complex Fourier Series**

The complex Fourier series of f(x) is defined as follows;

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 x}$$
(2.19)

The complex Fourier coefficient, c<sub>n</sub>, is obtained as follows;

$$c_{n} = \frac{1}{L} \int_{-L/2}^{L/2} f(x) e^{-in\omega_{0}x} dx$$
(2.20)

where  $\omega_0 = \frac{2\pi}{L}$ , *L* is a period of periodic function, f(x).

## **Fourier Transform**

$$f(x) = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi) e^{-i\omega\xi} d\xi\right] e^{i\omega x} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$$

$$F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

Fourier Transform (2.24)

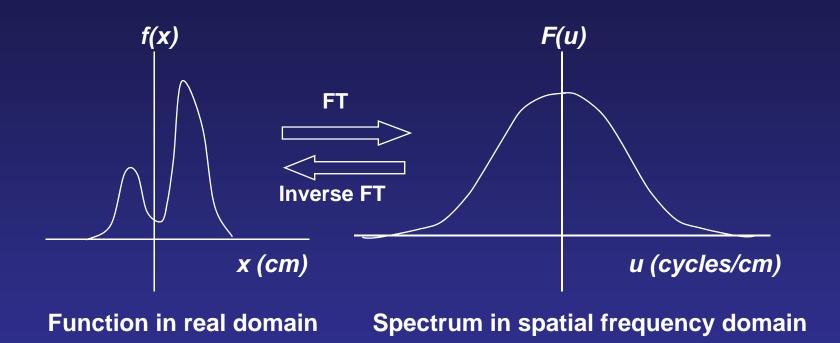
$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega x} d\omega$$

**Inverse Fourier Transform** (2.25)

 $\omega = 2\pi u$ ,  $d\omega = 2\pi du$ ,  $\omega$ : angular freq., u: spatial freq.

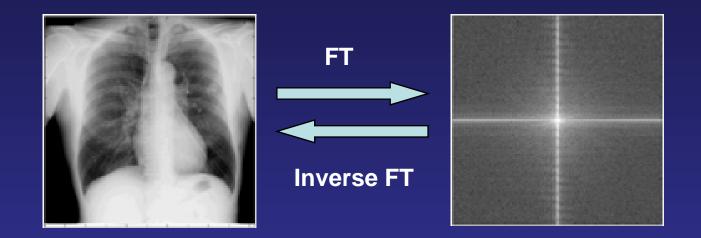
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux} dx$$
$$f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux} du$$

## **Fourier Transform**



Function, f(x), includes the distribution of spatial frequency components (spectrum) as shown by F(u).

## **Fourier Transform of Image**



#### Image in real domain

#### Spectrum in spatial frequency domain

## Parseval's Theorem and Convolution Integral

$$\int_{-\infty}^{\infty} f(x)^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega \quad ; Parseval's \ Theorem$$
$$|F(\omega)|^2 \quad ; Power Spectrum$$

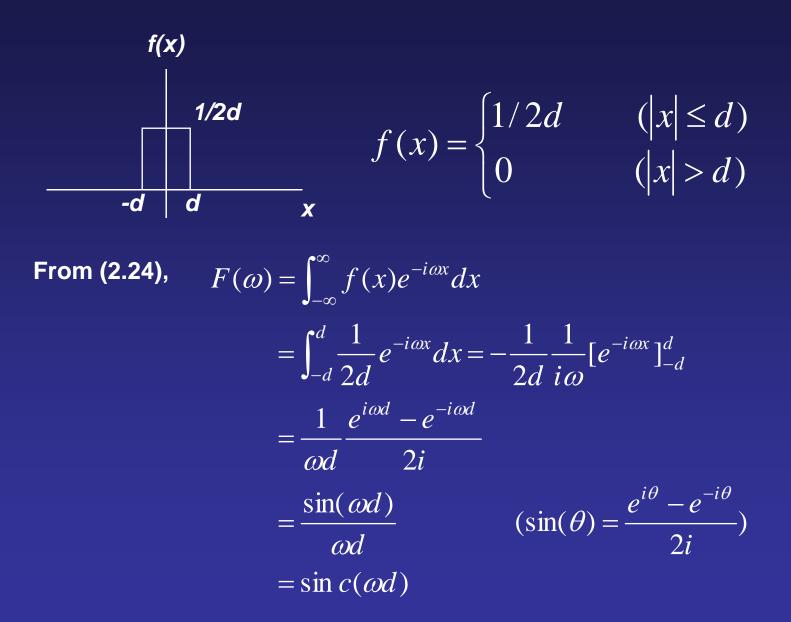
The convolution integral of f(x) and g(x) is defined as follows,

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\tau)g(x-\tau)d\tau$$

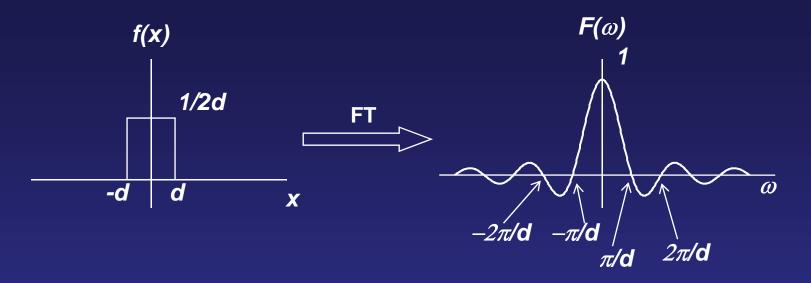
If  $F(\omega) = \Im[f(x)]$  and  $G(\omega) = \Im[g(x)]$ ,  $\Im[f(x) * g(x)] = F(\omega)G(\omega)$  convolution integral theorem

FT of convolution of f(x) and g(x) is equal to the multiplication of each FT.

#### Fourier Transform of Rectangle Pulse 1



#### **Fourier Transform of Rectangle Pulse 2**



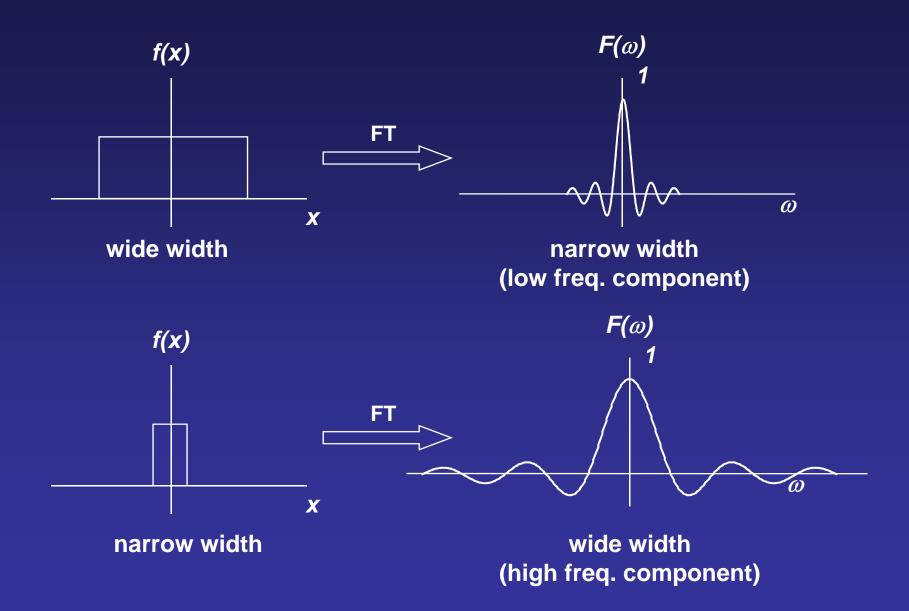
$$f(x) = \begin{cases} 1/2d & (|x| \le d) \\ 0 & (|x| > d) \end{cases}$$

$$F(\omega) = \frac{\sin(\omega d)}{\omega d} = \sin c(\omega d)$$

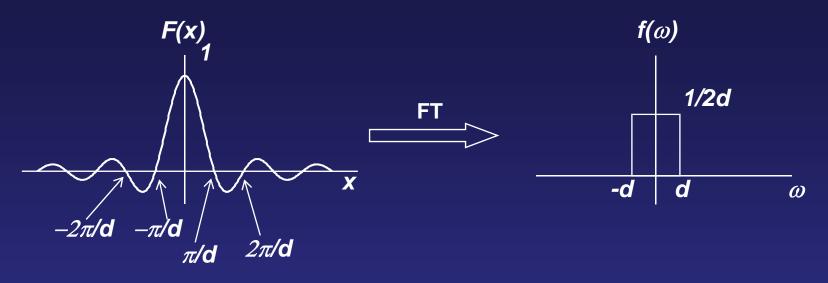
**Rectangle Pulse** 

**Sinc Function** 

#### **Relation between Width of Rectangle Pulse and Sinc Function**



#### **Fourier Transform of Sinc Function**



$$F(x) = \frac{\sin(xd)}{xd} = \sin c(xd)$$

$$f(\omega) = \begin{cases} 1/2d & (|\omega| \le d) \\ 0 & (|\omega| > d) \end{cases}$$

#### **Sinc Function**

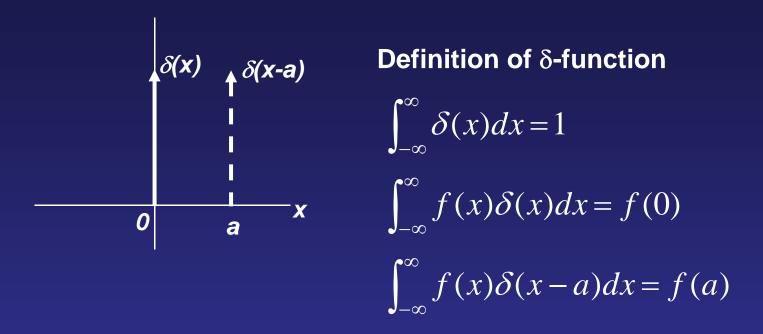
**Rectangle Pulse** 

#### From symmetric property of Fourier transform,

$$if \quad F(\omega) = \Im[f(x)],$$
  

$$\Im[F(x)] = f(-\omega) = f(\omega) \quad (f(\omega): even function)$$
  
Therefore, 
$$\Im[\frac{\sin(xd)}{xd}] = f(-\omega) = f(\omega) = \begin{cases} 1/2d & (|\omega| \le d) \\ 0 & (|\omega| > d) \end{cases}$$

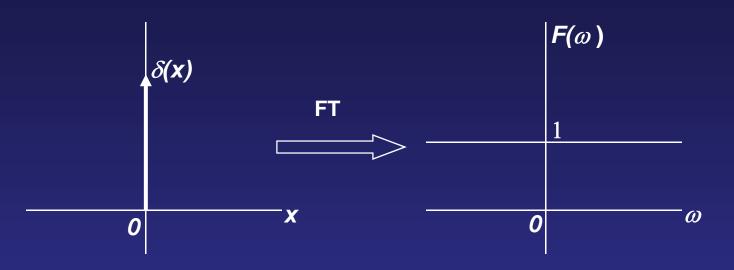
#### **Fourier Transform of Delta δ-Function 1**



Fourier Transform of δ-function

$$F(\omega) = \int_{-\infty}^{\infty} \delta(x) e^{-i\omega x} dx = e^{-i\omega 0} = e^{0} = 1$$

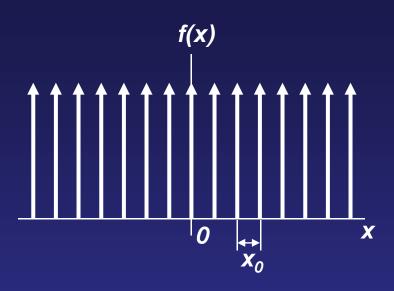
#### **Fourier Transform of \delta-Function 2**



The  $\delta$ -function includes all frequency component. The spectrum including all frequency component with constant value is called "white noise".

$$\begin{array}{c|c}
\delta(\mathbf{x} - \mathbf{x}_0) \\
\hline \\
\mathbf{0} \\ \mathbf{x}_0 \\ \mathbf{x}_0 \\ \mathbf{x}_0 \\ \mathbf{x}_0 \end{array} \qquad \mathfrak{I}[\delta(x - x_0)] = \int_{-\infty}^{\infty} \delta(x - x_0) e^{-i\omega x} dx = e^{-i\omega x_0}
\end{array}$$

#### **Fourier Transform of \delta-Function Sequence 1**



١Л

 $n = -\infty$ 

 $n_{\lambda_0}$ 

 $\delta$ -function sequence (or comb function):

Periodic function of  $\delta$ -function with period,  $x_0$ 

$$f(x) = \dots + \delta(x + 2x_0) + \delta(x + x_0) + \delta(x) + \delta(x - x_0) + \delta(x - 2x_0) \dots$$
$$= \sum_{n=0}^{\infty} \delta(x - nx_n)$$

#### **Fourier Transform of δ-Function Sequence 2**

f(x) can be expressed by a Fourier series, because f(x) is periodic.

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega_0 x} = \sum_{n=-\infty}^{\infty} c_n e^{i2\pi n u_0 x} \qquad (\omega_0 = 2\pi u_0)$$
  
where,  $u_0 = 1/x_0$   
 $c_n = \frac{1}{x_0} \int_{-x_0/2}^{x_0/2} f(x) e^{-i2\pi n u_0 x} dx$   
 $= \frac{1}{x_0} \int_{-x_0/2}^{x_0/2} \delta(x) e^{-i2\pi n u_0 x} dx = \frac{1}{x_0} e^0$   
 $= \frac{1}{x_0} = u_0$ 

Therefore,

$$f(x) = \sum_{n = -\infty}^{\infty} u_0 e^{i2\pi n u_0 x} = u_0 \sum_{n = -\infty}^{\infty} e^{i2\pi n u_0 x}$$

## **Fourier Transform of** δ**-Function Sequence 3**

$$F(u) = \Im[u_0 \sum_{n=-\infty}^{\infty} e^{i2\pi n u_0 x}]$$
$$= u_0 \sum_{n=-\infty}^{\infty} \Im[e^{i2\pi n u_0 x}]$$

$$\Im[\delta(x-u_0)] = e^{-i\omega u_0} = e^{-i2\pi u_0 u}$$
$$\Im[\delta(x+u_0)] = e^{i2\pi u_0 u}$$
$$\Im[\delta(x+nu_0)] = e^{i2\pi nu_0 u}$$

**From symmetric property of FT,** *if*  $F(u) = \Im[f(x)], \quad \Im[F(x)] = f(-u)$ 

#### Therefore,

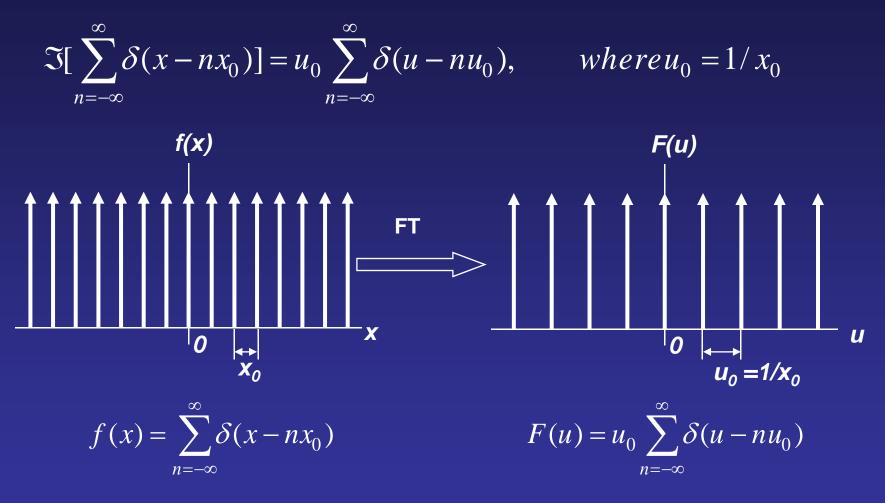
$$\mathfrak{I}[e^{i2\pi nu_0x}] = \delta(-u + nu_0) = \delta(u - nu_0)$$

(even function:  $\delta(U) = \delta(-U)$ )

Finally,

$$F(u) = u_0 \sum_{n=0}^{\infty} \delta(u - nu_0)$$

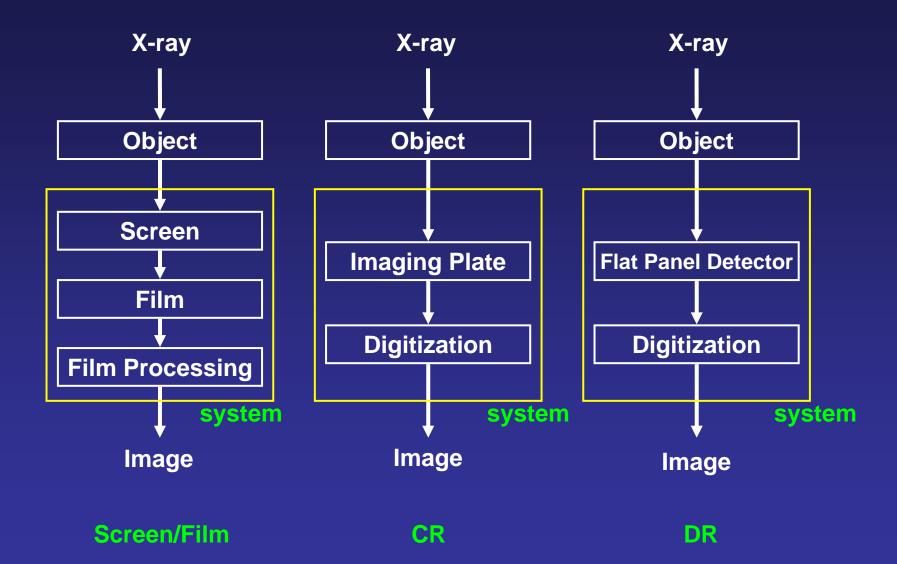
#### **Fourier Transform of δ-Function Sequence 4**



δ-function sequence

δ-function sequence

#### **System for Image Formation**



#### **Input-Output System for Image Formation**



The system includes screen/film or imaging plate or flat panel detector.

$$g(x) = L[f(x)]$$

where L indicate a conversion rule from f(x) to g(x).

If we can know the conversion rule, L, we can extrapolate input from output accurately.

It is very difficult to determine *L* of a general system. However, *L* of a linear system can be determined easily.

#### **Linear System**



Additivity

*if* 
$$g_1(x) = L[f_1(x)]$$
, *and*  $g_2(x) = L[f_2(x)]$ ,  
 $L[a_1f_1(x) + a_2f_2(x)] = a_1g_1(x) + a_2g_2(x)$ 

**Steadiness** 

$$L[f(x - x_1)] = g(x - x_1)$$

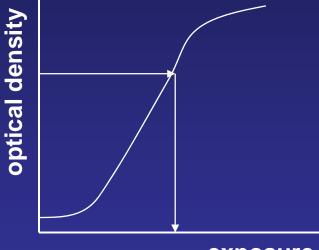
If the system has additivity and steadiness, the system is called a linear system.

#### Is the screen/film system a linear system?

# The screen/film system is not linear, because film has not additivity.

However, if the optical density can be converted to exposure by using a film characteristic curve, we can handle the screen/film system as a linear system.

#### **Film Characteristic Curve**



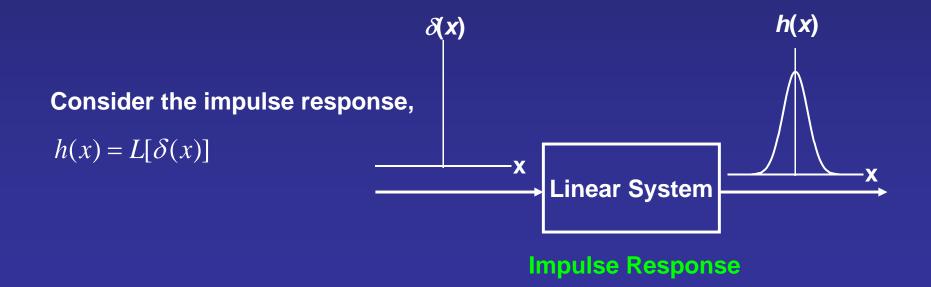
exposure

#### Linear System Response 1



By using  $\delta$ -function, input f(x) can be expressed as follows,

 $f(x) = \int_{-\infty}^{\infty} f(\tau)\delta(x-\tau)d\tau \qquad because \quad \int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$ 



## Linear System Response 2



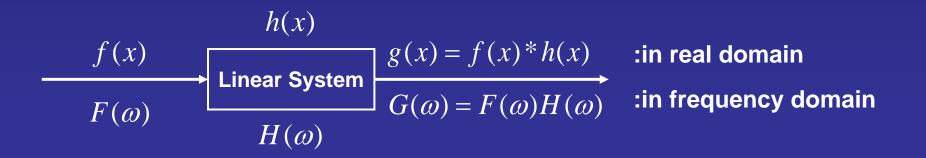
$$g(x) = L[f(x)]$$
  
=  $L[\int_{-\infty}^{\infty} f(\tau)\delta(x-\tau)d\tau]$   
=  $\int_{-\infty}^{\infty} f(\tau)L[\delta(x-\tau)]d\tau$   
=  $\int_{-\infty}^{\infty} f(\tau)h(x-\tau)d\tau$   
=  $f(x)*h(x)$ 

#### Linear System Response 3

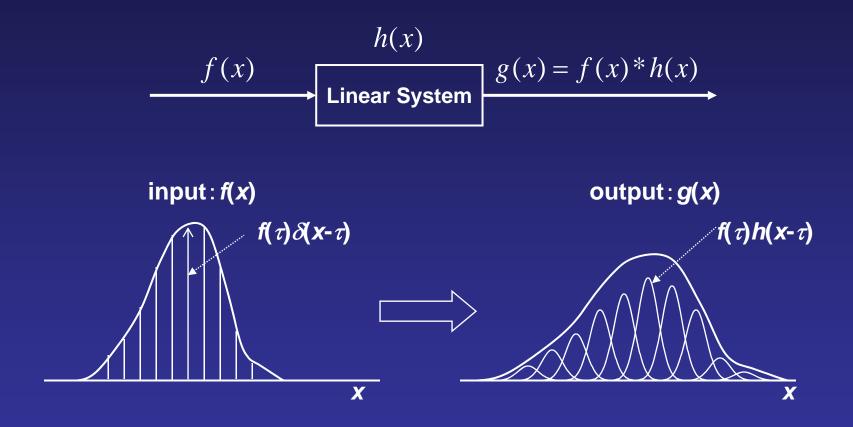
In summary, output of a linear system can be obtained from convolution integral of input and impulse response as follows,

g(x) = f(x) \* h(x)if  $F(\omega) = \Im[f(x)]$ ,  $G(\omega) = \Im[g(x)]$ , and  $H(\omega) = \Im[h(x)]$ ,

from convolution integral theorem,  $G(\omega) = F(\omega)H(\omega)$ 

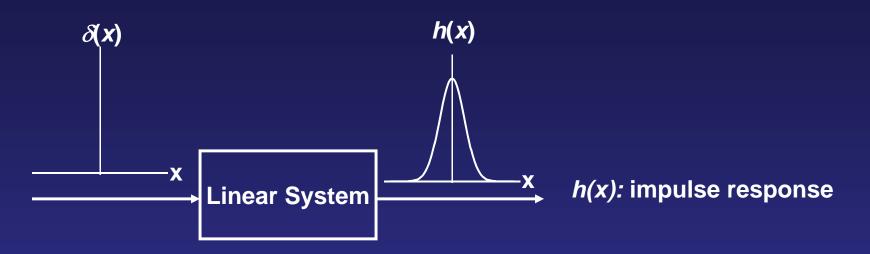


Linear System Response in Real Domain



The output of a linear system is superposition of many impulse responses.

#### **System Function (Frequency Response Function) 1**

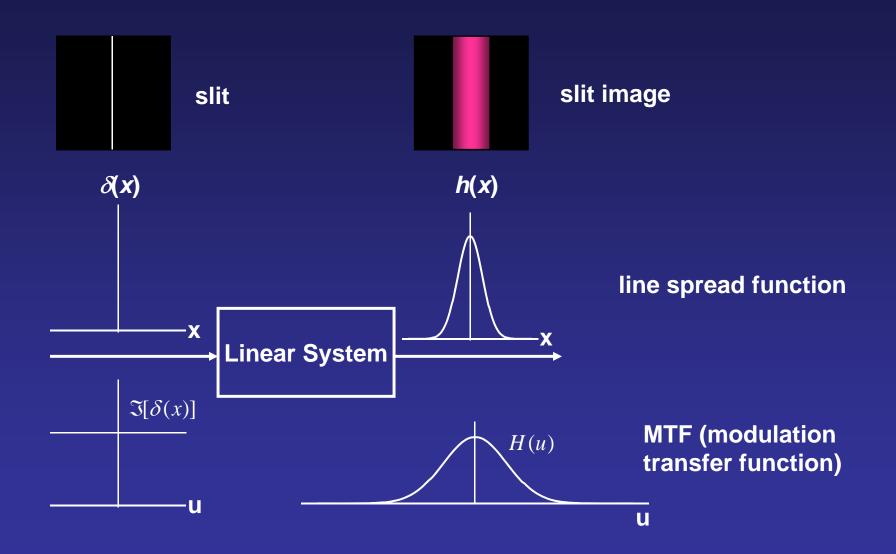


The Fourier transform of impulse response, h(x), is called the system function,  $H(\omega)$ .

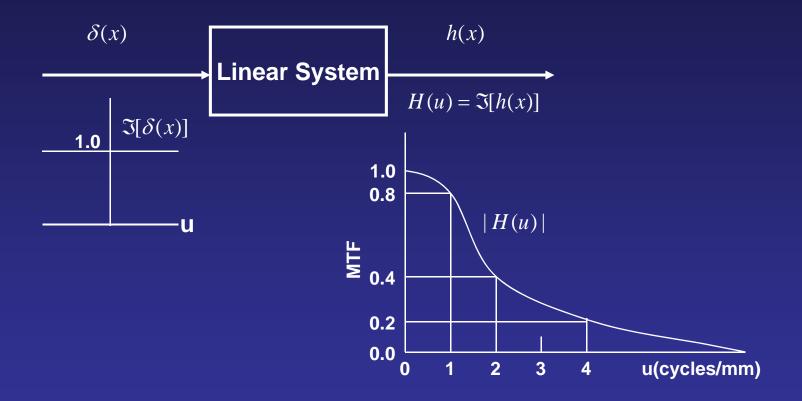
The impulse response of screen/film is obtained by a slit image (line spread function) with very narrow width.

 $|H(\omega)|$  is called MTF or the response function to evaluate the frequency response of contrast on medical images .

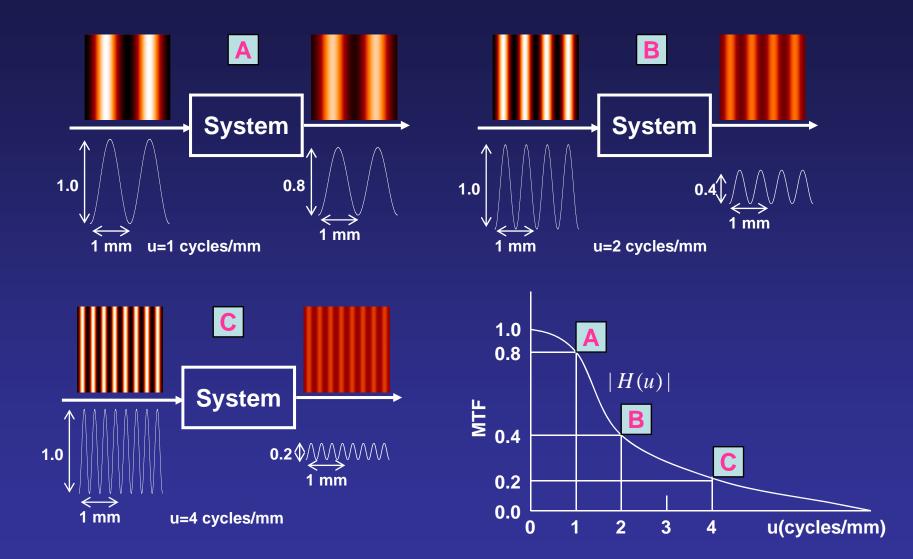
### **Impulse Response of Screen/Film**



## **Modulation Transfer Function (MTF) 1**



#### **Modulation Transfer Function (MTF) 2**



#### **Two Dimensional (2D) Fourier Transform**

**1D FT** 
$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx, \qquad f(x) = \int_{-\infty}^{\infty} F(u)e^{i2\pi ux}du$$

#### 2D FT can be obtained from the expansion of 1D FT.

$$F(u,v) = \Im[f(x,y)]$$

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dx dy$$

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{i2\pi(ux+vy)} du dv$$

**Two Dimensional (2D) Discrete Fourier Transform (DFT)** 

#### 2D DFT of a digital image with M x N matrix size

$$F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-i2\pi (\frac{ux}{M} + \frac{vy}{N})}$$
  

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{i2\pi (\frac{ux}{M} + \frac{vy}{N})}$$
  

$$x, u = 0, 1, 2, \dots, M-1$$
  

$$y, v = 0, 1, 2, \dots, N-1$$
  

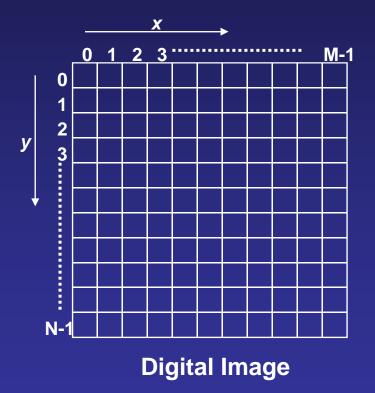
$$\therefore e^{i2\pi k} = 1 \quad (k = \pm 1, \pm 2, \pm 3, \dots)$$
  

$$f(x+k_x M, y+k_y N) = f(x,y)$$
  

$$k \quad k = \pm 1 \pm 2 \pm 3 \dots$$

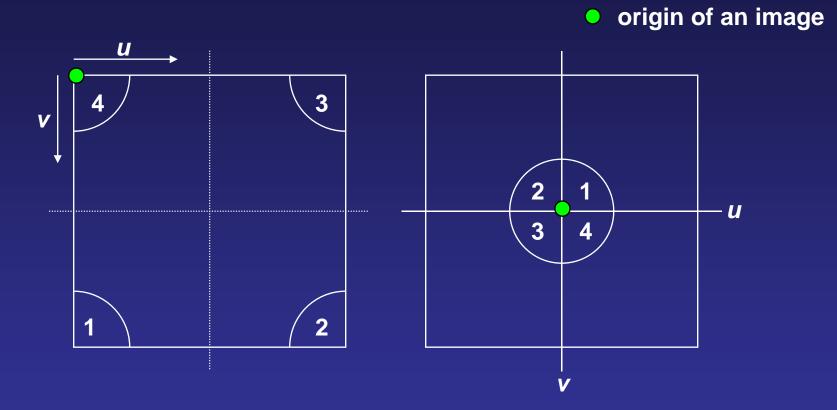
x,

٧



#### FFT (fast Fourier transform) is usually used for calculation.

#### **Rearrangement Frequency Domain after FT**



FFT is calculated for image with an origin at upper left. Therefore, we must rearrange the frequency domain to move an origin from upper left to center.

# Thank you for your attention!!