
Image Enhancement: Frequency domain methods 
 
 
• The concept of filtering is easier to visualize in the frequency 

domain. Therefore, enhancement of image ),( nmf  can be done 
in the frequency domain, based on its DFT ),( vuF .  

 
• This is particularly useful, if the spatial extent of the point-

spread sequence ),( nmh  is large. In this case, the convolution  
 
  
 
 
 
 
 
 

may be computationally unattractive.  
 
• We can therefore directly design a transfer function ),( vuH  and 

implement the enhancement in the frequency domain as 
follows:  

 
 
 
 
 
 
 
 
 
 
 
 

),(),(),( vuFvuHvuG =

Enhanced Image Given Image 

Transfer function 

),(*),(),( nmfnmhnmg =

Enhanced Image Given Image 

PSS 



 

Lowpass filter ing  
 
 
 

• Edges and sharp transitions in grayvalues in an image contribute 
significantly to high-frequency content of its Fourier transform. 

 
• Regions of relatively uniform grayvalues in an image contribute 

to low-frequency content of its Fourier transform.  
 
• Hence, an image can be smoothed in the Frequency domain by 

attenuating the high-frequency content of its Fourier transform.  
This would be a lowpass filter! 

 
• For simplicity, we will consider only those filters that are real 

and radially symmetric.  
 
• An ideal lowpass filter  with cutoff frequency 0r : 
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• Note that the origin (0, 0) is at the center and not the corner of 
the image (recall the “fftshift”  operation).  

 
• The abrupt transition from 1 to 0 of the transfer function 

),( vuH  cannot be realized in practice, using electronic 
components. However, it can be simulated on a computer.  

 
 
 
 
 
 
 

Ideal LPF with 570 =r  



Ideal LPF examples 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
• Notice the severe r inging effect in the blurred images, which 

is a characteristic of ideal filters. It is due to the discontinuity 
in the filter transfer function.  

Original Image LPF image, 570 =r  

LPF image, 360 =r  LPF image, 260 =r  



Choice of cutoff frequency in ideal LPF 
• The cutoff frequency 0r  of the ideal LPF determines the amount 

of frequency components passed by the filter.  
• Smaller the value of 0r , more the number of image components 

eliminated by the filter.  
• In general, the value of 0r  is chosen such that most components 

of interest are passed through, while most components not of 
interest are eliminated.  

• Usually, this is a set of conflicting requirements. We will see 
some details of this is image restoration 

• A useful way to establish a set of standard cut-off frequencies is 
to compute circles which enclose a specified fraction of the total 
image power. 
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total image power. 
• Consider a circle of radius )(0 αr  as a cutoff frequency with 

respect to a threshold α such that T
v u

PvuP α=∑∑ ),( .  

• We can then fix a threshold α and obtain an appropriate cutoff 

frequency )(0 αr .  
 
 
 
 
 
 
 



Butterworth lowpass filter  
 

• A two-dimensional Butterworth lowpass filter has transfer 
function: 

 
• n: filter order, r0: cutoff frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
• Frequency response does not have a sharp transition as in the 

ideal LPF.  
 
• This is more appropriate for image smoothing than the ideal 

LPF, since this not introduce ringing.  
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Butterworth LPF with 
360 =r and 1=n  



 

Butterworth LPF example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Original Image LPF image, 180 =r  

LPF image, 130 =r  LPF image, 100 =r  



 
 

Butterworth LPF example: False 
contour ing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Image with false contouring 
due to insufficient bits used 
for quantization 

Lowpass filtered version of 
previous image 



 

Butterworth LPF example: Noise 
filter ing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Original Image 

Noisy Image 

LPF  Image 



 
 

Gaussian Low pass filters 
 

• The form of a Gaussian lowpass filter in two-dimensions is 

given by 
22 2/),(),( σ−= vuDevuH , where 22),( vuvuD +=  is the 

distance from the origin in the frequency plane.  

• The parameter σ measures the spread or dispersion of the 
Gaussian curve. Larger the value of σ, larger the cutoff 
frequency and milder the filtering.  

• When σ=),( vuD , the filter is down to 0.607 of its maximum 
value of 1.  

• See Example 4.6 in the text for an illustration.  

• Also read section 4.3.4 for an application of lowpass filtering to 
text images.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Highpass filter ing  
 
 
 

• Edges and sharp transitions in grayvalues in an image contribute 
significantly to high-frequency content of its Fourier transform. 

 
• Regions of relatively uniform grayvalues in an image contribute 

to low-frequency content of its Fourier transform.  
 
• Hence, image sharpening in the Frequency domain can be done 

by attenuating the low-frequency content of its Fourier 
transform.  This would be a highpass filter! 

 
• For simplicity, we will consider only those filters that are real 

and radially symmetric.  
 
• An ideal highpass filter  with cutoff frequency 0r : 

 
 

 
 
 
 
 
 
 
 




>+
≤+=

0
22

0
22

  if  ,1

  if  ,0
),(

rvu

rvu
vuH



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Note that the origin (0, 0) is at the center and not the corner of 
the image (recall the “fftshift”  operation).  

 
• The abrupt transition from 1 to 0 of the transfer function 

),( vuH  cannot be realized in practice, using electronic 
components. However, it can be simulated on a computer.  

 
 
 
 
 
 

Ideal HPF with 360 =r  



 

Ideal HPF examples 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

• Notice the severe r inging effect in the output images, which 
is a characteristic of ideal filters. It is due to the discontinuity 
in the filter transfer function.  

Original Image HPF image, 180 =r  

HPF image, 360 =r  HPF image, 260 =r  



Butterworth highpass filter  
 

• A two-dimensional Butterworth highpass filter has transfer 
function: 

 
• n: filter order, r0: cutoff frequency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
• Frequency response does not have a sharp transition as in the 

ideal HPF.  
 
• This is more appropriate for image sharpening than the ideal 

HPF, since this not introduce ringing.  
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Butterworth HPF with 
470 =r  and 2 



 

Butterworth HPF example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Original Image HPF image, 470 =r  

HPF image, 360 =r  HPF image, 810 =r  



Gaussian High pass filters 
 

• The form of a Gaussian lowpass filter in two-dimensions is 

given by 
22 2/),(1),( σ−−= vuDevuH , where 22),( vuvuD +=  is 

the distance from the origin in the frequency plane.  

• The parameter σ measures the spread or dispersion of the 
Gaussian curve. Larger the value of σ, larger the cutoff 
frequency and more severe the filtering.  

• See Example in section 4.4.3 of text for an illustration.  

 


