Genetic Algorithms: A Tutorial

“Genetic Algorithms are good at taking large, potentially huge search spaces and navigating them, looking for optimal combinations of things, solutions you might not otherwise find in a lifetime.”

- David E. Goldberg

Computer Design, May 1995
The Genetic Algorithm

- Directed search algorithms based on the “mechanics” of biological evolution
- Developed by John Holland, University of Michigan (1970’s)
 - To understand the adaptive processes of natural systems
 - To design artificial systems software that retains the robustness of natural systems
- Provide efficient, effective techniques for optimization and machine learning applications
- Widely-used today in business, scientific and engineering processes.

Evolutionary Computation

A collection of computational methods inspired by biological evolution:

- A population of candidate solutions evolves over time, with the fittest at each generation contributing the most offspring to the next generation
- Offspring are produced via crossover between parents, along with random mutations and other “genetic” operations.
Classes of Search Techniques

- Search techniques
 - Calculus-based techniques
 - Guided random search techniques
 - Enumerative techniques
 - Direct methods
 - Indirect methods
 - Evolutionary algorithms (Genetic algorithms)
 - Simulated annealing
 - Dynamic programming

Components of a GA

- Basic genetic population \((\text{gene, chromosome})\)
- Initialization procedure \((\text{creation})\)
- Selection of parents \((\text{reproduction})\)
- Evaluation function \((\text{environment})\)
- Genetic operators \((\text{mutation, recombination})\)
- Parameter settings \((\text{practice and art})\)
Simple Genetic Algorithm

{
 initialize node population;
 evaluate node population;
 while (TerminationCriteriaNotSatisfied)
 {
 select parent nodes for reproduction;
 perform recombination and mutation;
 evaluate population;
 }
}

The GA Cycle of Reproduction

- **reproduction**
- **population**
- **children**
- **modification**
- **evaluation**
- **modified children**
- **evaluated children**
- **discard**
- **deleted members**

1. parents → 2. reproduction
2. reproduction → 3. children → 4. modification → 4. modified children
5. evaluated children → population
6. discarded members → discard
Population

Chromosomes could be:
- Bit strings (0101 ... 1100)
- Real numbers (43.2 -33.1 ... 0.0 89.2)
- Any element (E11 E3 E7 ... E1 E15)
- Lists of rules (R1 R2 R3 ... R22 R23)
- Program elements (genetic programming)
- ... any data structure ...

Reproduction

Parents are selected at random with selection chances "biased" in relation to evaluations.
Chromosome Modification

- Modifications are stochastically triggered
- Operator types are:
 - Mutation (alter, change)
 - Crossover (recombination)

Mutation: Local Modification

Before: \((1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0)\)

After: \((0 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0)\)

Before: \((1.38 \ -69.4 \ 326.44 \ 0.1)\)

After: \((1.38 \ -67.5 \ 326.44 \ 0.1)\)

- Causes movement in the search space (local or global)
- Restores lost information to the population
Crossover: Recombination

\[\begin{array}{c}
P_1 \quad (0 1 1 0 1 0 0 0) \\
P_2 \quad (1 1 0 1 1 0 1 0)
\end{array} \]

\[\begin{array}{c}
* \\
\Rightarrow \quad (0 1 0 0 1 0 0 0) \quad C_1 \\
\Rightarrow \quad (1 1 1 1 1 0 1 0) \quad C_2
\end{array} \]

Crossover is a critical feature of genetic algorithms:
- It greatly accelerates search early in evolution of a population
- It leads to effective combination of schemata (subsolutions on different chromosomes)

Evaluation

- The evaluator decodes a chromosome and assigns it a fitness measure
- The evaluator is the only link between a classical GA and the problem it is solving
Deletion

population

\[\text{discarded members} \]

discard

- **Generational GA**: entire populations replaced with each iteration
- **Steady-state GA**: a few members replaced each generation

Genetic Programming

- Begin
-

 - Initialisation

 \[(n)^{\text{th}} \text{ Generation} \]

 - Evaluation / Fitness Computing

 \[\text{(e.g. travel time, cost)} \]

 - \((n+1)^{\text{th}} \text{ Generation} \)

 - Mutation
 - Crossover
 - Reproduction

- \(\text{STOP?} \)

 - \(N \)

 - \(Y \)

- End

Research Methodology

15

Genetic Algorithms: A Tutorial

David E. Goldberg
Director, Illinois Genetic Algorithms Laboratory (IlliGAL)
University of Illinois at Urbana-Champaign

John R. Koza
Consulting Professor
Department of Electrical Engineering
School of Engineering, Stanford University
A Simple Example

“The Gene is by far the most sophisticated program around.”

- Bill Gates, Business Week, June 27, 1994

The Traveling Salesman Problem:

Find a tour of a given set of cities so that

- each city is visited only once
- the total distance traveled is minimized
Representation

Representation is an ordered list of city numbers known as an *order-based* GA.

1) Chennai 3) Vellore 5) Mumbai 7) Tiruchi
2) Coimbatore 4) Hyderabad 6) Pondicherry 8) Vizag

CityList1 (3 5 7 2 1 6 4 8)
CityList2 (2 5 7 6 8 1 3 4)

Crossover

Crossover combines inversion and recombination:

* *
Parent1 (3 5 7 2 1 6 4 8)
Parent2 (2 5 7 6 8 1 3 4)
Child (8 5 7 2 1 6 3 4)

This operator is called the *Order1* crossover.
Mutation

Mutation involves reordering of the list:

Before: \((8\ 5\ 7\ 2\ 1\ 6\ 3\ 4)\)

After: \((8\ 5\ 6\ 2\ 1\ 7\ 3\ 4)\)

TSP Example: 30 Cities
Solution \(i\) (Distance = 941)

![Graph showing Solution \(i\) (Distance = 941)]

Solution \(j\) (Distance = 800)

![Graph showing Solution \(j\) (Distance = 800)]
Solution \(k \)(Distance = 652)

Best Solution (Distance = 420)
Considering the GA Technology

“Almost eight years ago ... people at Microsoft wrote a program which uses some genetic function for finding short code sequences. Windows 3.0 and XP, NT, and almost all Microsoft applications products have shipped with pieces of code created by that system.”

Issues for GA Practitioners

- Choosing basic implementation issues:
 - representation
 - population size, mutation rate, ...
 - selection, deletion policies
 - crossover, mutation operators

- Termination Criteria
- Performance, scalability
- Solution is only as good as the evaluation function (often hardest part)

Benefits of Genetic Algorithms

- Concept is easy to understand
- Modular, separate from application
- Supports multi-objective optimization
- Good for “noisy” environments
- Always gives answer; answer gets better with time
- Inherently parallel; easily distributed
Benefits of Genetic Algorithms (cont.)

- Multiple ways to speed up and improve a GA-based application as knowledge about problem domain is gained
- Easy to exploit previous or alternate solutions
- Flexible building blocks for hybrid applications
- Substantial history and range of use

When to Use a GA

- Alternate solutions are too slow or much complicated
- Need an exploratory tool to examine new approaches
- Problem is similar to one that has already been successfully solved.
- Want to hybridize with an existing solution
- Benefits of the GA technology meet key problem requirements
Some GA Application Types

<table>
<thead>
<tr>
<th>Domain</th>
<th>Application Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>gas pipeline, pole balancing, missile evasion, pursuit</td>
</tr>
<tr>
<td>Design</td>
<td>semiconductor layout, aircraft design, keyboard configuration, communication networks</td>
</tr>
<tr>
<td>Scheduling</td>
<td>manufacturing, facility scheduling, resource allocation</td>
</tr>
<tr>
<td>Robotics</td>
<td>trajectory planning</td>
</tr>
<tr>
<td>Machine Learning</td>
<td>designing neural networks, improving classification algorithms, classifier systems</td>
</tr>
<tr>
<td>Signal Processing</td>
<td>filter design</td>
</tr>
<tr>
<td>Game Playing</td>
<td>poker, checkers, prisoner’s dilemma</td>
</tr>
<tr>
<td>Combinatorial Optimization</td>
<td>set covering, travelling salesman, routing, bin packing, graph colouring and partitioning</td>
</tr>
</tbody>
</table>

Some Applications of Genetic Algorithms

- **Optimization and design**
 - numerical optimization, circuit design, airplane design, factory scheduling, drug design, network optimization

- **Automatic programming**
 - evolving computer programs (e.g., for image processing), evolving cellular automata

- **Machine learning and adaptive control**
Some Applications of Genetic Algorithms

- Complex data analysis and time-series prediction
 - prediction of chaotic systems, financial-market prediction, protein-structure prediction

- Scientific models of complex systems
 - economics, immunology, ecology, population genetics, evolution, cancer

Evolutionary process

Essentials of Darwinian evolution:
- Organisms reproduce in proportion to their fitness in the environment
- Offspring inherit all traits from parents
- Traits are inherited with some variation, via mutation and sexual recombination

Essentials of evolutionary algorithms:
- Computer “organisms” (e.g., programs) reproduce in proportion to their fitness of problem environment (e.g., how well they perform a desired task)
- Offspring (outcome) inherit only strong traits (fitness) from their parent.
- Traits are inherited, with some variation, via mutation and cross-over methods
Steady-state Optimization Model and Algorithm of Glycerol Bioconversion to 1,3-Propanediol in Continuous Culture

An Li1,* \hspace{1cm} En-Min Feng2 \hspace{1cm} Pei-Jun Guo3 \hspace{1cm} Jian-Xiong Ye2

1School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
2School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China
3Department of Management System Science, Faculty of Business Administration, Yokohama National University, 79-4 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 Japan

\textbf{Abstract} This paper focuses on the improvement of the concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. A nonlinear steady-state optimization model is presented according to engineering background. A new linear approximating method has been developed in view of the feature of the optimization model. Computer simulation is used for this paper, and the numerical simulation is in accordance with experimental results. The numerical results illustrate the validity and efficiency of the algorithm. The results presented in this work can be used as guidelines for choosing proper operating parameters to get higher concentration or productivity.

\textbf{Keywords} Steady-state Optimization; Nonlinear Kinetic System; Nonlinear Programming; Linear Approximation Algorithm

\section{Introduction}

1,3-Propanediol (1,3-PD) has a wide range of potential uses. Polymers which use 1,3-PD as a monomer have some excellent characters such as strong resistance of air...
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28) 24/(24+23+20+11) = 31% 23/(24+23+20+11) = 29% etc

DEFINITION OF THE GENETIC ALGORITHM (GA)

The genetic algorithm is a probabilistic search algorithm that
(a) iteratively transforms a set (called a population) of mathematical objects (typically fixed-length binary character strings),
(b) each with an associated fitness value, into a new population of offspring objects using the Darwinian principle of natural selection,
(c) using operations that are patterned after naturally occurring genetic operations, such as crossover and mutation.
Genetic Algorithm Optimization for Accurate Hydraulic and Water Quality Analysis of Water Systems

Z. Y. Wu, T. Walski, R. Mankowski, G. Herrin and R. Gurrieri
Bentley Systems, Incorporated, USA

E. F. Arniella, E. Gianellaand, Envirossoft Eng. & Sci., Inc., USA

C. Clark, City of Sidney, Ohio, USA

P. Sage, United Utilities PLC, UK
ANTENNA DESIGN

- The problem (Altshuler and Linden 1998) is to determine the x-y-z coordinates of the 3-dimensional position of the ends \((X_1, Y_1, Z_1, X_2, Y_2, Z_2, \ldots, X_7, Y_7, Z_7)\) of 7 straight wires so that the resulting 7-wire antenna satisfies certain performance requirements
- The first wire starts at feed point \((0, 0, 0)\) in the middle of the ground plane
- The antenna must fit inside the 0.5 cube

ANTENNA GENOME

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(Y_1)</th>
<th>(Z_1)</th>
<th>(X_2)</th>
<th>(Y_2)</th>
<th>(Z_2)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0010</td>
<td>-1110</td>
<td>+0001</td>
<td>+0011</td>
<td>-1011</td>
<td>+0011</td>
<td>...</td>
</tr>
</tbody>
</table>

- 105-bit chromosome (genome)
- Each x-y-z coordinate is represented by 5 bits (4-bit granularity for data plus a sign bit)
- Total chromosome is \(3 \times 7 \times 5 = 105\) bits
ANTENNA FITNESS

- Antenna is for ground-to-satellite communications for cars and handsets
- We desire near-uniform gain pattern 10° above the horizon
- Fitness is measured based on the “antenna's radiation pattern”. The radiation pattern is simulated by National Electro-magnetics Code (NEC)
- Fitness is “sum of the squares of the difference between the average gain and the antenna's gain”
- Radiation can be considered for angles Θ between -90° and $+90^\circ$ and all azimuth angles Φ from 0° to 180°
- The smaller the value of fitness, the better

GRAPH OF ANTENNA FITNESS
FIVE MAJOR PREPARATORY STEPS FOR GP

- Determining the set of terminal inputs
- Determining the set of functions
- Determining the fitness measure
- Determining the parameters for the run
- Determining the method for designating a result and the criterion for terminating a run

PREPARATORY STEPS

<table>
<thead>
<tr>
<th></th>
<th>Objective:</th>
<th>Find a computer program with one input (independent variable X) whose output equals the given data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Terminal set:</td>
<td>T = {X, Random-Constants}</td>
</tr>
<tr>
<td>2</td>
<td>Function set:</td>
<td>F = {+, -, *, %}</td>
</tr>
<tr>
<td>3</td>
<td>Fitness:</td>
<td>The sum of the absolute value of the differences between the candidate program’s output and the given data (computed over numerous values of the independent variable X from -1.0 to +1.0)</td>
</tr>
<tr>
<td>4</td>
<td>Parameters:</td>
<td>Population size M = 4</td>
</tr>
<tr>
<td>5</td>
<td>Termination:</td>
<td>An individual emerges whose sum of absolute errors is less than 0.1</td>
</tr>
</tbody>
</table>
Conclusions

Question: ‘Why GAs are so smart, rich?’

Answer: ‘Genetic algorithms are rich - rich in application across a large and growing number of disciplines.’

- David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning