
Intel 8251 chip
Which was originally developed for systems based on the 8080/8085 series 8-bit microprocessors, but

can also be attached to the system buses of other microprocessor systems. The original 8251 chip

supports both asynchronous and synchronous serial communication, but the Hades simulation model as

yet only supports the more common asynchronous mode, where the serial communication line is kept

idle between transmissions. The operation of the chip and its several operating modes will be explained

below and in the following applets.

USART 8251 or universal synchronous and asynchronous receiver and transmitter. The

USART chip integrates both a transmitter and a receiver for serial-data communication based on

the RS-232 protocol. It allows connecting a microcomputer system to a variety of external

devices, e.g. mouse or trackball, serial keyboards and terminals, printers and plotters with RS-

232 interface, microcontroller development systems, flash-programmers, etc.

The RS-232 protocol for serial data communication is rather simple. For a thorough

explanation, see the RS-232 article on Wikipedia. The transmitter is connected to the receiver via

just two wires (signal and ground) for unidirectional communication. For bidirectional

communication between two devices, two separate unidirectional channels are combined, with

the transmitter of one device connected to the receiver of the other device. In this case, two

signal wires and a common ground connection are required. Several variants of the protocol are

in use, which differ in the actual symbol encoding via voltage levels or currents. The original

current-loop encoding used a steady-state current of 20 mA to indicate a passive line and zero

amps to indicate an active state. This way, a broken connection between the transmitter and

receiver could be detected immediately. In microprocessor systems, it is often more convenient

to encode the symbols with voltages. Here, a high level ('1') is used to indicate an inactive line,

while a low level ('0') indicates the active state of the line. Often, extra converter chips like the

popular MAX-232 driver are used to amplify the output signal of a weak transmitter chip and to

protect a microprocessor system from glitches on the external communication line(s).

To indicate the beginning of a data transmission, the transmitter first drives the signal line to the

low (active) state for one period of the transmitter clock. This is called the start bit. During the

next periods of the transmitter clock, the selected number of data bits (usually five to eight) are

transmitted starting with the least significant bit. If enabled, a parity bit is inserted after the most

significant data bit. Finally, the signal line is kept high (passive) for at least one transmitter clock

period; this is called the stop-bit. Often, two-stop bits are used. After the stop bit(s), the signal

line is kept in the idle (inactive) state until the start bit of the next data is to be transmitted. The

example figure below shows the transmission with one startbit, eight databits, parity bit, and two

stopbits. Obviously, the receiver must be configured to use the same number of data-bits, parity,

and stop-bits as the transmitter. Also, the bit clock of the receiver must match the transmitter's

clock within a few percent for successful data reception:

http://en.wikipedia.org/wiki/RS232

8251 USART description

The Intel 8251 chip integrates a standard (8-bit) microprocessor bus interface, one serial

transmitter, and one serial receiver. A few additional control lines are provided for modem-

control and efficient handshaking or interrupts.

The bus-interface consists of the bidirectional 8-bit data-bus (lines D7..D0) and the read/write

control-logic with the following inputs:

 DATA (D7..D0) 8-bit bidirectional data-bus

 RESET active-high reset input

 nCS chip select input (active low)

 CnD command (high) or data (low) selection input

 nRD read enable input (active low)

 nWR write enable input (active low)

The transmitter logic consists of the nTXC transmitter clock input, the TXD data output, and two

status output signals called TXE (or TXEMPTY) and TXRDY. The receiver logic consists of a

separate RXC receiver clock input, the RXD data input, the RXRDY status output, and one

programmable status line called SYNDET/BD. Four additional lines, provide modem-control

capabilities. The output lines nDTR (data transmit ready) and nRTS (ready to transmit) can be

written by the host microprocessor, while the input lines nCTS (clear to send) and nDSR (data

send ready) can be read by the host microprocessor. The nCTS input signal also directly controls

the transmitter of the 8251 chip. When nCTS goes high, the transmitter will finish an ongoing

data transfer but subsequent transmissions will wait until nCTS becomes low again. If unused,

the nCTS input must be tied to ground or the transmitter will be effectively disabled. The Hades

symbol groups the bus-interface signals on the left side, the transmitter signals on the upper part

of the right side, and the receiver signals on the lower part of the right side. The modem-control

signals are placed in the middle of the right side.

Similar to the 8255 chip explained in the previous applets, the bus-interface of the 8251 is

asynchronous. The CnD (command/not-data) control input selects between command and data

transfers; this signal could also be called an address input A0. The resulting behaviour is the

following:

 reset nCS nRD nWR CnD data | behaviour

 -------------------------------------+-----------------------------------

 1 * * * * * | device reset

 0 1 * * * * | device passive

 0 0 1 1 * * | device selected but inactive

 0 0 0 1 1 read | read status register

 0 0 1 0 1 write | write mode/command/sync registers

 0 0 0 1 0 read | read receive buffer

 0 0 1 0 0 write | write transmit buffer

 u u u u u * | any undefined U,X,Z value will

 | invalidate the simulation model

The chip contains seven user-visible registers, five of which can only be written, and two of

which can only be read. These are the following:

 mode register - sync/async operation mode and parameters

 command register - enable/disable and error resetting

 sync 1 character - 8-bit dataword (sync mode only)

 sync 2 character - 8-bit dataword (sync mode only)

 transmit buffer - 8-bit register for outgoing data

 receive buffer - 8-bit register with incoming data

 status register - several status and error bits

As shown in the above table, the receive buffer and status register can be selected via the CnD

input for reading, and the transmit buffer can be selected via CnD=0 for writing. However, it is

impossible to directly select any one of the four control (mode/command/sync1/sync2) registers

for writing when CnD=1. Instead, a state-machine inside the 8251 chip selects which control

register is to be written depending on its current state. The first control (CnD=1) write operation

following a chip-reset is interpreted as a write to the mode register. If synchronous mode has

been selected by this write operation, the next (or next two) write operations are used to initialize

the sync1 (or sync1 and sync2) registers. All following write operations are interpreted to write

the command register. If the "internal reset" bit is set during one of the command register write

operations, the chip returns to the reset-state, and the first subsequent write operation is again

targeted at the mode register.

This sounds complicated, but in practice we just need two write operations to setup and initialize

the USART 8251 chip. The first write operation selects asynchronous mode and the protocol

parameters (number of databits, parity, number of stopbits), while a second write operation

enables the transmitter and receiver blocks. Further write operations to the command register are

only required to reset the error-flags in the status register after transmission errors, or to change

the communication parameters.

The meaning of the bits in the mode register is as follows:

 D7D6: stop bits selection

 11 = 2 stopbits

 10 = 1.5 stopbits

 01 = 1 stopbits

 00 = invalid (at least 1 stopbit required)

 D5D4: parity selection.

 11 = even parity

 10 = parity disabled

 01 = odd parity

 00 = parity disabled

 D3D2: character length

 11 = 8 databits

 10 = 7 databits

 01 = 6 databits

 00 = 5 databits

 D1D0: mode / baud-rate factor

 11 = async mode, 64x TXC/RXC prescaler

 10 = async mode, 16x TXC/RXC prescaler

 01 = async mode, no clock prescaler

 00 = sync mode (not implemented in Hades)

For example, the stimuli generator used in this applet writes the binary value 11001101 or hex

0xCD into the 8251 mode register. This selects async mode without prescaler (D1=0 and D0=1),

eight databits (D3=1 and D2=1), no parity (D5=0 and D4=0), and two stopbits (D7=1 and

D6=1). When a databit length of less than eight bits is selected, the upper (most significant) bits

are discarded during transmission, and the receive buffer is padded with leading-zeroes after

reception. In some datasheets, bit D5 is also called EP (even parity) and bit D4 is called PEN

(parity enable). Also, bits D7 and D6 have a special function when synchronous mode (D1=0

D0=0) is selected; see the datasheet for details. Please note that the following restrictions apply

to the Hades simulation model: synchronous mode is not implemented at all, and 1.5 stopbits are

replaced by 2 stopbits during transmission.

The meaning of the bits in the command register is as follows:

 D7: EH 1=hunt mode 0=normal operation

 D6: IR 1=internal reset 0=normal operation

 D5: RTS set nRTS output value 1: nRTS='0' 0: nRTS='1'

 D4: ER 1=reset error flags 0=keep error flags

 D3: SBRK 1=send break character 0=normal operation

 D2: RXE 1=enable receiver 0=disable receiver

 D1: DTR set nDTR output value 1: nDTR='0' 0: nDTR='1'

 D0: TXEN 1=enable transmitter 0=disable transmitter

In this applet, the stimuli generator writes the binary value 00000001 (hex 0x01) into the

command register, which enables the transmitter but disables the receiver.

The meaning of the bits in the status register is as follows:

 D7: DSR nDSR input value: 1: nDRS is '0' 0: nDSR is '1'

 D6: SYNDET 1=sync char detected (not implemented)

 D5: FE 1=frame error flag 0=ok

 D4: OE 1=overrun error 0=ok

 D3: PE 1=parity error 0=ok

 D2: TXEMPTY 1=transmission complete 0=transmitter busy

 D1: RXRDY 1=receiver ready 0=receiver busy

 D0: TXRDY 1=transmitter accepts new data 0=transmitter busy

The RXRDY status bit and the corresponding output pin are asserted when a new data character

has been received via the RXD data input. Similarly, the TXEMPTY status bit and

corresponding output pin are asserted when a data character has been fully sent via the TXD data

output, while the TXRDY flag and pin indicate that a new data value can be written to the 8251

transmitter buffer register. Note that the SYNDET/BD (sync detect, break detect) bit is not yet

implemented in the Hades simulation model. Instead, this bit will always read as zero.

Note: We chose the 8251 U(S)ART instead of other similar UART chips because of the simple

operation and initialization. Only two registers have to be written to configure the 8251, and the

behaviour of transmitter and receiver can be observed easily, because the flow and modem

control lines are directly connected to input and output pins. The main alternative would have to

use a model based on the well-known Intel 8250 chip, used for the serial communication

interface of the original IBM PC. However, the focus here is on serial data communication itself,

and a complete simulation model of the 8250 or the later 16550 chips (with on-chip FIFO buffer)

would be far more complex.

