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NCS-455: FUNCTIONAL AND LOGIC 
PROGRAMMING LAB  

Program in SML- NJ or CAML for following:  
1. To implement Linear Search.  

2. To implement Binary Search.  

3. To implement Bubble Sorting.  

4. To implement Selection Sorting.  

5. To implement Insertion Sorting.  

Implement using LISP  

6. Write a function that compute the factorial of a number.(factorial of 0 is 1, and factorial of n is 

n*(n-1)*...1.Factorial is defined only for integers greater than or equal to 0.)  

7. Write a function that evaluate a fully parenthesized infix arithmetic expression . For 

examples, (infix (1+(2*3))) should return 7.  

8. Write a function that performs a depth first traversal of binary tree. The function should 

return a list containing the tree nodes in the order they were visited.  

9. Write a LISP program for water jug problem.  

10. Write a LISP program that determines whether an integer is prime.  

Implement using PROLOG  

11. Write a PROLOG program that answers questions about family members and relationships 

includes predicates and rules which define sister, brother, father, mother, grandchild, 

grandfather and uncle. The program should be able to answer queries such as the following:  

1. father(x, Amit)  

2. grandson(x, y)  

3. uncle(sumit, puneet)  

4. mother(anita, x)  

References: 

1. ML for the Working Programmer  (Book Support Page) 

2. LISP programming 

http://www.cl.cam.ac.uk/~lp15/MLbook/
http://www.cl.cam.ac.uk/~lp15/MLbook/
http://www.cs.utexas.edu/ftp/AI-Lab/tech-reports/UT-AI-TR-85-6.pdf


3. PROLOG programming 

 

1 Introduction to ML 

1.1 Why ML? 
ML is clean and powerful, and has many traits that language designers consider hallmarks of a 

good high-level language: 

 Uniform reference model: all objects allocated in heap and accessed by reference 

 Garbage collected 

 Strongly, statically typed, with an excellent type system 

 Strongly typed = programs cannot corrupt data by using it as incorrect type. 

 Statically typed = types known and checked at compile time. 

 "Milner-Damas" type system hits a "sweet spot" combining flexibility (polymorphism) 

with ease of use (type inference). (Note: sometimes also called "Hindley-Milner" type 

system.) 

 Highly orthogonal design: most features are independent and (where sensible) 

arbitrarily combinable. 

 Exceptions: well-defined error handling. 

 Expression-oriented, not statement-oriented 

 Sophisticated module system: powerful mechanisms for organizing larger units of code. 

However, module system's complexity is controversial, and rarely fully exploited in 

practice. 

 Clean syntax 

 ML is the "exemplary" statically typed, strict functional 

programming language. 

1.2 History of ML 
Fig. 1 gives an abbreviated family DAG of the ML family, and a few related languages. Dotted 

lines indicate significant omitted nodes. The rounded box indicates those variants of the ML 

family that most people would call ML. A brief history of ML: 

1. 1973: ML invented as part of the University of Edinburgh's LCF project, 
led by Robin Milner et al., who were conducting research in constructing 
automated theorem provers. Eventually observed that the "Meta 
Language" they used for proving theorems was more generally useful 
as a programming language. 

2. Late 1970's: polymorphic type inference system completed by Milner and 
Damas. 

3. Mid-80's: Standard ML; parameterized module system added by Dave 
MacQueen; Caml fork at INRIA (France). 

https://staff.fnwi.uva.nl/u.endriss/teaching/prolog/prolog.pdf


4. 1996: Objective Caml, by Xavier Leroy et al.; adds inheritance to Caml 
module system. 

5. 1997: ML97 revision of Standard ML. 

 
Fig. 1: Family DAG of ML, and related languages 

Miranda and Haskell are statically typed lazy (as opposed to strict) functional 
languages, with many similarities to ML (including ML-like polymorphic type 
systems). 

EML and Cyclone are research languages devised by people who are 
currently at UW, or have been in the past. (We will discuss these languages 
towards the end of the quarter.) They are marked as descending from the 
entire ML family because the distinctions between, e.g., SML and O'Caml are 

not important w.r.t. the way ML influenced these languages. 

The general ideas of ML have been highly influential in the research community; if we 

enumerated all the ML dialects or relatives that researchers have devised over the years, the 

dotted line to the lower right of the figure would probably have hundreds of descendants. 

The interactive ML interpreter 

For this class, we'll use the SML/NJ implementation of ML97. Like most ML 
implementations, SML/NJ provides a read-eval-print loop ("repl"), so named 

because the interpreter repeatedly performs the following: 

http://www.cs.washington.edu/research/projects/cecil/www/pubs/icfp02.html
http://www.research.att.com/projects/cyclone/


1. reads an expression or declaration from standard input, 
2. evaluates the expression/declaration, and 
3. prints the value of expressions, or perhaps the type and initial value of 

declarations. 

The primary advantage of programming in a repl is immediate feedback. The 
read-eval-print cycle is much faster than the edit-compile-run cycle in a typical 
compiled programming environment. You can quickly and easily experiment 
with different snippets of code. If a function doesn't work, you can try out a 
different version in a second or two, and re-run your program. This makes 
interactive repls ideal for "exploratory" programming. 

(Often in the course of my teaching, a student has presented me with a code snippet and asked: 

"What happens if I write X? Or XY? Or, how about XYZ?" Of course, the best way to find out is 

simply to write X, Y, and Z, and then run the various combinations. But in a compiled 

environment, you have to create a new file, and repeatedly compile each different version of the 

program. In a repl, it's easy to quickly experiment interactively with all these variations.) 

Of course, typing long chunks of code repeatedly can be tedious, so the repl 
allows you to load source from a file with the use function, which takes 
a stringfilename and loads the contents of the named file as though it were 
typed into the interpreter directly. (You can also use Unix pipes, or 
programming environments like Emacs sml-mode, to send code into the 

interpreter.) 

1.3 Expressions, values, and bindings 
All programming languages allow users to manipulate data, and all useful languages provide two 

kinds of data: 

1. Atomic data: simple, "indivisible" types, including booleans, integers, 
characters, floating point numbers, and (in some languages, ML 
included) strings. 

2. Compound data: ways of "building up" larger data structures from 
simpler ones. 

We'll start with atomic data. Here's the result of entering some expressions that evaluate to 

atomic data into the SML/NJ read-eval-print loop: 

$ sml 

Standard ML of New Jersey, Version 110.0.7 ... 

- 3; 

val it = 3 : int 

- 3.0; 

val it = 3.0 : real 



- #"3"; 

val it = #"3" : char 

- "3"; 

val it = "3" : string 

- true; 

val it = true : bool 

The dash is the SML/NJ prompt indicating that it's waiting for you to type in an 
expression or a declaration. When you type in an expression followed by a 
semicolon, SML/NJ parses the expression, then evaluates it to a value. Then it 
prints that value, along with its type. The above values are of 

type bool, int,real, char, and string respectively. 

There are many operators defined over atomic types, including most of the ones you'd expect. 

See Ullman sections 2.1-2.2 and ch. 9.1 for information about these. Minor surprises: 

1. ~ is the arithmetic negation operator, and it is distinct from the 

subtraction operator. 

There is no equality defined directly over reals. 

2. The short-circuiting boolean "and" and "or" operators are 
named andalso and orelse respectively. 

Technical note: Values are expressions that are "done evaluating". 

Therefore, 3 is a value, whereas 3 + 4 is not a value, because this expression 
can evaluate one more step, to 7. 

Technical note 2: ML also has an odd atomic type called unit. unit has only 
one value, which is written () (empty parens): 

- (); 

val it = () : unit 

unit plays a role similar to (but not identical to) that of void in other languages 
--- for example, functions that don't have a meaningful return value will have 
return type unit. The difference is that () is a real value --- one that can be 
bound to names, passed to functions, etc., just like any other value. We'll 
discuss the relative merits of unit vs. void more when we discuss functions. 



1.3.1 val bindings 

But what is this val it = 3 business? In order to explain this, we must first 
examine bindings, which resemble what other languages call "variables". 

Bindings are declarations; the val declaration binds a value to a name. A 
bound name can then be used later to refer to the value that was bound to it: 

- val x = 3; 

val x = 3 : int 

- x; 

val it = 3 : int 

- x + 3; 

val it = 7 : int 

Aha, now we can guess what it is... 

- it; 

val it = 3 : int 

When you do not bind an expression to a name at the top-level interpreter 
prompt, it gets bound to the name it by default. This is not a feature of ML per 
se; it's just a helpful feature of the SML/NJ repl. If you want to prevent this, 

you can bind the value to the wildcard, _ (single underscore): 

- val _ - 4; 

- it; 

val it = 3 : int 

Notice that the interpreter does not print the val it = ... after the wildcard 

binding, and that it is unchanged afterwards. The wildcard _ is not a variable 
name; it's a placeholder that means, "evaluate this as if you were binding it to 
a name, but instead throw it away". We'll revisit wildcards in more depth when 

we discuss pattern matching. 

Name bindings resemble variable declarations in a language like C or Java, with several 

important differences: 

1. Bindings must always be bound to a value in the declaration. 
2. Bindings are always by reference; that is, the declaration val x = 

3; refers to a value 3 in the heap. Another way of saying this is that all 
values are (conceptually) always accessed by a pointer. 



3. Bindings are immutable: you cannot alter what a binding points to --- 
which is one reason why they must always be bound initially. (Bindings 
are therefore somewhat like final variables in Java.) 

But wait --- the last bullet may appear to be a lie, because look: 

- val y = 5; 

val y = 5 : int; 

- val y = 6; 

val y = 6 : int; 

What's going on? Is the y binding getting modified? Well, actually, no --- the 
second declaration is shadowing the earlier declaration. 

 
Figure 2: ML top-level environment for interactive session in these notes 

so far. 

Bindings in ML live in environments, and the "top-level" environment can be 
visualized conceptually as an ever-growing stack of bindings. Fig. 2 shows a 
diagram of the top-level environment resulting from the interactive ML session 

so far. There are several interesting things to note about this picture. 

First, the second y and the second it binding are shadowed by later bindings: 
names in a given scope always refer to the most recent binding with a 

matching name; this binding hides any earlier bindings with the same name. 

This may seem like it doesn't matter, but only because we've so far only been dealing with the 

top-level environment. The top-level environment corresponds, roughly, to the "global" scope in 



C-like languages. Bindings at top-level are available anywhere that they are not shadowed by 

some other binding. We'll discuss other environments shortly. 

Second, x and the shadowed it share a pointer to the same 3 value. When a 
binding is assigned a value, conceptually the pointer to that value is copied to 

the new binding. All values in ML are implicitly by-reference. 

Third, this picture only shows the logical picture of data in memory. The implementation may 

optimize how it represents values in various ways, provided the behavior is indistinguishable 

from the behavior in this picture. For example, it can discard unused or shadowed bindings, if it 

can prove that those bindings can never be accessed again. It may also have a special, more 

efficient representation for pointers-to-integers --- such as the integers themselves. (It is a 

useful thought exercise to consider why this representation optimization is safe. Remember that 

most ML values, including integers, are immutable.) 

1.4 Aside: What about assignment? 

OK, making a new val doesn't modify bindings; what about assignment? 
Suppose a Java programmer forgets for a moment that this is ML, and tries to 

assign a different value to y using =: 

- y = 10; 

val it = false : bool 

- y; 

val it = 3 : int 

What's going on? Well, for one thing, = does not mean assignment in ML. 
Actually, you cannot perform assignment on ML bindings at all --- as 

previously noted, they are immutable. The expression y = 10 is a comparison, 
which evalutes to the boolean value false. This is why SML/NJ prints val it = 

false, and why y is unchanged. 

Computation in ML, as in all functional languages, proceeds primarily 
by evaluating expressions. Assignment and with other "side effects" of 
evaluation play a much smaller role in functional languages than in imperative 
languages. Code without side effects is said to be purely functional, or 

simply pure. 

Most of the code we write in this class will be pure. One of the important 
lessons of functional programming is that side effects are rarely necessary. In 
fact, some languages, such as Haskell, are completely pure (side-effect free). 
Functional programming advocates claim that code that extensively employs 
side effects tends to be confusing and harder to reason about (both 



automatically and manually) than pure code. When you see a function 

call f(x), and you know that f is a pure function, then you don't have to worry 
about "hidden" consequences --- the only thing the call does is produce its 

return value. If f has side effects, then you must remember what those side 
effects are, and what order they happen relative to other side effects, etc. 

You can apply this lesson even in non-functional languages: for example, in 

Java, make as many fields and variables final as you can. 

1.5 A few words on type inference 

If you're used to languages like Java, ML's val declarations should look 

slightly odd to you. In Java, you might write: 

int a = 5; 

float b = 5.0; 

char c = '5'; 

String d = "5"; 

Notice that the syntax of declarations requires that the programmer always 
explicitly specify the type. ML's syntax doesn't require this, because ML has 
a type inference system. Generally, ML will determine the types of names and 
values based on how you use them. You only need to declare the types of 
names explicitly in certain cases when the type inference algorithm doesn't 
have enough information to do it automatically. To write down a value's type 
explicitly is toascribe the type to the value; in ML, the syntax for ascription 

is expr:type or name:type, e.g.: 

- 5:int; 

val it = 5 : int 

- val x:int = 5; 

val x = 5 : int 

- val x = 5:int; 

val x = 5 : int 

Notice that you may ascribe the type after either the name or the initializing 
expression. Actually, type ascriptions can syntactically appear after 
(nearly) anyvalue or declared name. ML's type inference algorithm 
"propagates" the ascribed type to other positions in the code that must have 

the same type. 



For simple values like the ones we've seen so far, ascription is never 
necessary, but we will eventually see examples where types must be 
explicitly ascribed(i.e., written down). 

(Side note: In some cases, ML programmers ascribe types even where it's not necessary --- 

either for documentation, or to give a value a "more specific" type than the inference algorithm 

will infer by itself.) 

1.6 Incorrect type ascriptions 
What if the programmer ascribes an incorrect type? 

- val z:char = 5; 

stdIn:1.1-40.4 Error: pattern and expression 

    in val dec don't agree [literal] 

  pattern:    char 

  expression:    int 

  in declaration: 

    z : char = 5 

Short answer: if the ascriptions cause the inference algorithm to assign an invalid type to an 

expression, then a type error results. We'll discuss this in more detail when we cover type 

inference and polymorphism. 

Built-in compound data types 

ML has several families of built-in data types; these include: 

Records: fixed-size, heterogeneous collections indexed by name 

Tuples: fixed-length, heterogeneous sequences indexed by position 

Lists (singly linked): variable-length, homogeneous sequences with O(1) time to prepend a value 

and O(n) time to access a value in the list. 

Vectors: variable-length, homogeneous sequences with O(1) access time for elements (i.e., like 

arrays) 

You should be familiar with these fundamental types from Java, but in ML all 
these built-in types are immutable. If you want to "alter" one of these 
compound values, you must create a new value that copies all the 
components except the field or position you want to change; that field/position 

should contain the updated value. 

ML has special syntactic support for constructing and manipulating its built-in 
types. This is one of the reasons ML code is much more compact than C or 
Java code. Each family of built-in types has a constructor syntax that 
constructs a value of appropriate type from that family. (In ML, a constructor 



for a type t is a function that takes zero or more arguments and constructs a 
fresh value of t.) 

1.7 Records 

Records resemble structs in C, or method-less objects in Java; they are 
constructed by writing a list of one or more field assignments name = value in 
between two curly braces {}. Here are some examples: 

- val foo = {x = 3}; 

val foo = {x=3} : {x:int} 

- val bar = {x = 3, y = true}; 

val bar = {x=3,y=true} : {x:int, y:bool} 

- val baz = {x = "hi", y = foo}; 

val baz = {x="hi",y={x=3}} : {x:string, y:{x:int}} 

- val boo = {foo = #"h", bar = "i", baz = 123.0}; 

val boo = {bar="i",baz=123.0,foo=#"h"} : {bar:string, baz:real, 

foo:char} 

As you can see, a record type (e.g., {x:int}) is written a comma-separted list 
of one or more field declarations name:type in between curly braces. In general, 
the syntax of types in ML closely mirrors the syntax for constructing values of 

those types. 

Record types are equivalent if they have exactly the same field names and types. A record of one 

type cannot be assigned to a record of a different type: 

- val aPoint:{x:int, y:int} = {x = 1.0, y = 2.2}; 

stdIn:1.1-50.20 Error: pattern and expression 

    in val dec don't agree [tycon mismatch] 

  pattern:    {x:int, y:int} 

  expression:    {x:real, y:real} 

  in declaration: 

    aPoint : {x:int, y:int} = {x=1.0,y=2.2} 

 

- val simpleRecord:{x:int} = {x = 1, y = 2}; 

stdIn:55.1-55.42 Error: pattern and expression 

    in val dec don't agree [tycon mismatch] 

  pattern:    {x:int} 

  expression:    {x:int, y:int} 

  in declaration: 

    simpleRecord : {x:int} = {x=1,y=2} 

Notice that, unlike objects in a language like Java, a record value cannot be "implicitly 

promoted" to a record with fewer fields. In other words, ML does not havesubtype 

polymorphism. 



Fields of a record value are accessed using the special function #fieldName applied 

to recordValue: 

- val r = {x=1, y=2}; 

val r = {x=1,y=2} : {x:int, y:int} 

- #x(r); 

val it = 1 : int 

Side note: What happens if you put zero fields in a record? 

- {}; 

val it = () : unit 

Oops. That doesn't look like a record type --- that's unit. In my opinion, this is a bug in ML. 

However, see below on the empty tuple. 

1.8 Tuples 

Tuples work a lot like records, except that the fields have an explicit order; and instead of using 

field names, you use positions to access the members. 

Tuples are constructed simply by enclosing a comma-separated list of two or more values in 

round parentheses (): 

- (1, 2); 

val it = (1,2) : int * int 

- ("foo", 25, #"b", false); 

val it = ("foo",25,#"b",false) : string * int * char * bool 

As you can see, tuple types are written as a *-separated sequence of types: type1 * type2 * 

... * typeN. 

The Kth element of a N-tuple can be accessed by the special accessor function #K, as follows: 

- val x = (54, "hello"); 

val x = (54,"hello") : int * string 

- val firstX = #1(x); 

val firstX = 54 : int 

- val secondX = #2(x); 

val secondX = "hello" : string 

Side note: What happens if you put one element in parens? Zero? 



- (1); 

val it = 1 : int 

- (); 

val it = () : unit 

In my opinion, unlike the empty record case, these make sense. As in other languages, 

parentheses group terms that should be evaluated before other terms. Rather than constructing a 

1-tuple, which is useless, (expr) evaluates expr before any surrounding expressions and returns 

it. Also, viewing unit as a "zero-tuple" makes more sense to me than viewing empty records 

as unit, though I can't justify this opinion with anything other than my arbitrary taste. 

1.9 Lists 

Linked lists are the bread and butter of functional programming. (Perhaps recursive, higher-order 

functions are the knife and fingers.) ML lists are homogeneous; that is, all elements must have 

the same type. The type of a list of elements of type t is written "t list", e.g. int 

list or string list. For any type t, a t list has two constructors: 

1. nil, the empty list (also written []) 

2. :: (pronounced "cons", terminology borrowed from Lisp), which is an infix operator that 

constructs a single list cell from its left and right arguments. The left argument must be of 

some type t, and the right argument must be of some type t list. Intuitively, this should 

be familiar; in a Java-like language, a node in a singly linked list whose elements have 

type T would usually be defined as follows: 

3. class TListNode { 

4.     T value; 

5.     TListNode next; 

6. } 

Lists may also be constructed from a comma-separated list of values inside square brackets []. 

This is syntactic sugar for a sequence of conses; and, in fact, when you type a list of conses at 

the repl, SML/NJ will answer using this sugared syntax. 

- val x = 1::nil; 

val x = [1] : int list 

- val y = 1::2::3::nil; 

val y = [1,2,3] : int list 

- val z = 4::x; 

val z = [4,1] : int list 

A picture of the data structres in memory that result from the above three declarations is shown 

in Fig. 3. 



 
Figure 3: ML top-level environment and data structures in heap resulting from list 

construction. 

Note the following: 

1. Lists have finite length, so the last element must always be nil. 

2. The value bound to z is well-typed because the 4 is an int, and x is an int list. 

3. The list constructed for z uses the list value bound to x directly as its "tail". This is safe 

because lists are immutable. 

The first element of a list can be obtained using the function hd ("head"), and the rest of a list can 

be obtained using tl ("tail"). Note that, in functional programming terminology, the tail is 

the entire rest of the list after the head, not the last element (think tadpoles, not dogs). 

Calling hd or tl on an empty list results in a runtime error (exception). 

- hd([1,2,3]); 

val it = 1 : int 

- hd(tl([1,2,3])); 

val it = 2 : int 

- hd(tl(1::nil)); 

 

uncaught exception Empty 

  raised at: boot/list.sml:36.38-36.43 

Q: What is the type of a bare nil? 

- nil; 

val it = [] : 'a list 



What is this 'a business? In ML, a type whose name begins with a single quote character is 

a type variable which means, roughly, "any type can be substituted here". Types with type 

variables are called polymorphic types. nil is actually a polymorphic value, i.e. it has 

polymorphic type; this must be so, because lists of all types share nil as the terminating value. 

The polymorphism in ML's type system is actually one of its best features. We will describe this 

in more detail as the quarter goes on; for now, we'll work mostly with lists with some concrete 

element type. 

Uniform reference data model 

As depicted in the figures in the previous section, all ML values are accessed by reference, a.k.a. 

by pointer. When a value is bound to a name or stored in another data structure, the pointer to 

that value is copied to the appropriate location, not the value itself. 

Uniformly accessing variables by reference greatly simplifies program understanding. In 

languages where values can be "inline" rather than by-reference, there are complex and 

confusing rules for how and when values are implicitly copied, and what happens when these 

implicit copies occur. 

(If you're familiar with C++, consider the uses of copy constructors, or what happens when you 

copy a value of type T to a stack-allocated value belonging to one of T's superclasses.) 

All values are first-class citizens 

All ML's data values are first-class citizens, meaning that all values have "equal rights": they can 

all be passed to functions, returned from functions, bound to names, stored as elements of other 

values, etc. 

One consequence is that in ML, as in most reasonable languages, compound types can be nested 

arbitrarily. You can have lists of tuples, tuples of lists, or records of lists of tuples of records of 

tuples, etc., because a compound type can be used anywhere an atomic type can be used. This is 

an example of ML's high degree of orthogonality: 

- val a = [{x=1,y=2},{x=3,y=4}]; 

val val = [{x=1,y=2},{x=3,y=4}] : {x:int, y:int} list 

- val b = ("hello", [#"w", #"o", #"r", #"l", #"d"], #"!"); 

val b = ("hello",[#"w",#"o",#"r",#"l",#"d"],#"!") 

    : string * char list * char 

- val c = {name=("Keunwoo", "Lee"),  

=          classes=["341","590dg","590l"], 

=          age=26}; 

val c = 

{age=26,classes=["341","590dg","590l"],name=("Keunwoo","Lee")} 

     : {age:int, classes:string list, name:string * string} 



Exercise: try writing code in Java, or your favorite other programming language, that constructs 

objects that are roughly equivalent to the above three values. How many lines does it take? 

Let-expressions and nested environments 

In the above, we alluded to the fact that the top-level environment was not the only 

environment. Let expressions are one way to introduce local environments, which produce 

names that are visible only in a local scope. 

Let expressions have the form let decls in expr end, where decls is a semicolon-separated 

sequence of declarations and expr is some expression that may optionally use the names bound 

in decls. Names bound in a let-expression are only visible to later bindings in the same let-

expression, and inside the body expression. Outside the scope of the let-expression, the bindings 

are no longer visible. For example: 

- let val x = 5 in x + x end; 

val it = 10 : int 

- let 

=   val localA = "hello"; 

=   val localB = "+++++++"; 

=   val localB = ", "; 

=   val localC = localB ^ "world" 

= in 

=   localA ^ localC                     (* XXX *) 

= end; 

val it = "hello, world" : string 

- localA; 

stdIn:88.1-88.9 Error: unbound variable or constructor: localA 

- let 

=   val earlierBinding = laterBinding + 1; 

=   val laterBinding = 5 

= in 

=   earlierBinding + laterBinding 

= end; 

stdIn:120.24-120.36 Error: unbound variable or constructor: 

laterBinding 

 
Figure 4: Contents of local let-environment at pointXXX. 



Order of bindings matters: 

1. Later bindings are not visible to earlier ones 

2. Later bindings shadow earlier bindings with the same name. 

These are really the same rules that apply in the top-level environment. All environments in ML 

work the same way. This is an example of ML's high degree of regularity: there are no special 

rules for top-level versus local environments. 

A diagram of the local environment at the point marked XXX is given in Fig. 4. 

Again: all values are first-class 

All expressions are first-class, and let expressions are expressions. Therefore, let expressions can 

be nested, and more generally may appear anywhere other expressions may appear: 

- val longLetExpr = 

=   let 

=     val aString = let val x = "hi, "; val y = "there" in x ^ y end; 

=     val anInt = 17 

=   in 

=     (anInt, let val period = "." in aString ^ period end) 

=   end; 

val longLetExpr = (17,"hi, there.") : int * string 
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: Functions and patterns 

Function basics 

Function syntax and types 

A function in ML is written as follows: 

fn arg => returnValue 

For example, the following function returns an integer that is one greater than its argument: 

- fn x => x + 1; 

val it = fn : int -> int 

1. SML/NJ gives the above function the type int -> int. In general, the 
type of a function is written argType -> returnType, which is reminiscent 
of the way mathematicians describe the domain and codomain of 
functions in math. In the academic programming languages literature, 
function types are sometimes be called "arrow types". 

2. Unlike atomic or simple compound types, function values are not 
echoed by SML/NJ; instead, SML/NJ simply writes fn as a placeholder 

for the value. 

The return value is the entire body of the function. Since ML proceeds by evaluaton of 

expressions, this is a natural way to define functions: the body is an expression that gets 

evaluated. This design differs from imperative languages, where a function body is usually a 

block of code to be executed. 

Ascribed argument or return types 

Function arguments (like all names in binding positions) and function bodies (like all 

expressions), can optionally be ascribed types: 

- fn x:int => x + 1;          (* ascribing to the argument *) 

val it = fn : int -> int 

- fn x => (x + 1):int;        (* ascribing to the body *) 

val it = fn : int -> int 
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This will sometimes be necessary when the body does not provide enough information to 

determine the exact type of an argument or return value. For example: 

- fn stringPair => #1(stringPair) ^ "!"; 

stdIn:32.1-32.38 Error: unresolved flex record 

   (can't tell what fields there are besides #1) 

We know that this function's argument is a tuple --- in fact, the programmer probably intends a 

pair, . However, we can't tell how many elements the tuple has. ML needs to know this in order 

to assign a type to the function, so we must ascribe a type to the argument: 

- fn stringPair:(string * string) => #1(stringPair) ^ "!"; 

val it = fn : string * string -> string 

In order to construct examples where ascribing to the return value is necessary, we must wait 

until we see more of the ML type system. 

Naming functions 

Recall that all values in ML are first-class. Functions are values. All values can 
be bound to names. Therefore, functions can be bound to names, which 
evaluate to their bound value exactly the same way that any other name 
evaluates: 

- val addOne = fn x => x + 1; 

val addOne = fn : int -> int 

- addOne; 

val it = fn : int -> int 

Since it is so common to bind function values to names, ML has syntactic sugar for function 

declarations: 

- fun addOne x = x + 1; 

val addOne = fn : int -> int 

Notice that SML/NJ echoes the desugared form of the val declaration. The 

two syntactic forms are semantically equivalent in every way. 

ML's treatment of functions and naming contrasts strongly with languages like C (where 

functions may only occur at top level, and must always be named) or Java (where methods may 

not be defined independently of classes, and methods only occur as "values" in the sense that 

object values can have methods). 

Function application 



Functions are applied to arguments by writing the argument after the function 
expression, and parenthesis around the argument are strictly optional. All of 
the following apply the function value bound to addOne to the integer 3: 

- addOne 3; 

val it = 4 : int 

- addOne(3); 

val it = 4 : int 

- (addOne 3); 

val it = 4 : int 

- (addOne)3; 

val it = 4 : int 

In ML programming, we usually include the parenthesis only where needed to enforce order of 

evaluation. 

Unlike some other languages, functions do not need to be bound to a name 

before they are applied; you may use the fn expression (an anonymous 
function) directly: 

(fn x => x + 1) 3; 

val it = 4 : int 

This is yet another instance of ML's regularity. Functions are simply values. Evaluating a 

function application simply proceeds by three steps: 

Evaluate the function value. 

Evaluating the argument value. 

Apply the function to the argument. 

It doesn't matter whether step 1 is a variable expression (for looking up a 
function value bound to a name) or an anonymous function expression. Both 
expressions evaluate to function values. More generally, it doesn't 
matter where the function expression comes from --- it may be obtained from 
the return value of a function, or by accessing a component of a data 
structure, or any of the other ways that a value may obtained. 

Typechecking function applications 

Function calls are typechecked in the obvious way: the actual argument must match the formal 

argument type. When it does not, you get an error: 

- addOne "hello"; 



stdIn:22.1-22.15 Error: operator and operand 

    don't agree [tycon mismatch] 

  operator domain: int 

  operand:         string 

  in expression: 

    addOne "hello" 

Precedence of function application 

Function application has quite high precedence, which can sometimes be confusing. Consider 

the folowing code fragment: 

fun italic s = "<i>" ^ s ^ "</i>"; 

- val italic = fn : string -> string 

fun italicGreeting name = italic "Hello, " ^ name; 

- val italicGreeting = fn : string -> string 

italicGreeting "Keunwoo"; 

val it = "<i>Hello, </i>Keunwoo" : string 

The italic function surrounds the input string in the HTML markup for italic 

text. You might think that the string concatenation expression "Hello, " ^ 
name gets evaluated, and the result passed to italic, but function application 
has higher precedence than string concatenation (or, indeed, most other 
operators). 

Thought question: Suppose you're typing a list in the square-bracket syntax and you accidentally 

omit a comma: 

[1, 2 3, 4]; 

What happens? Why? 

Functions with no meaningful return value or arguments 

Sometimes side effects are unavoidable. For now, we will acknowledge one 
limited use for side effects: input and output. The standard library 

function printmust have a side effect: printing to standard output changes the 
world. But what should a function like this return? It might return a status 
code, but often such functions have no natural return value. 

Languages like Pascal solve this problem by dividing the universe of control 
abstractions into two kinds: functions, which return values, and procedures, 

which do not. Languages like C solve this problem by having void functions --- 



functions that return nothing. ML uses an approach similar, but not identical 

to, the latter: it uses the unit type, which has one value, written (): 

- print; 

val it = fn : string -> unit 

- print "hi\n"; 

hi 

- val it = () : unit 

Functions that naturally take no parameters can accept unit: 

- val printHi = fn () => print "hi\n"; 

val printHi = fn : unit -> unit 

- printHi() 

hi 

val it = () : unit 

Because unit is written (), this is a sort of "visual pun" on zero-argument 
function calls in other languages. 

Control: Branching, sequencing, and patterns 

Imperative languages express branching through conditional statements; 
functional languages like ML, being expression-oriented, express branching 

primarily through conditional expressions. 

if expressions 

if conditional expressions in ML have the following syntax: 

if booleanExpr then expr1 else expr2 

These have the "obvious" semantics (similar to the :? operator in C): 

1. First, booleanExpr is evaluated. 

If the test expression is true, then the first expression is evaluated and is returned. 

2. If the test expression is false, then the expr2 is evaluated, and is 

returned. 



Here's a simple conditional expression: 

- if 1 > 2 then  

Like all expressions, if expressions are first-class. The result of 

an if expression can be used anywhere any other expression can be used. 
For example: 

[1, 2, if x = 4 then 5 else 6 ]; 

if x = 4 then 

  (if x > 10 then y else z, 

   if x > 20 then a else b) 

else 

  (17, 18) 

Be careful --- the first branch in the outermost if is a tuple (comma-separated 

value in parens), not a sequence of two expressions. 

Note that conditional expressions do not evaluate the un-taken branch --- this 

is why if cannot be naively implemented as an ordinary function call, which 
evaluates all its arguments prior to invoking the function. 

(Actually, we can implement a proper if function using function parameters, 
but as we shall see this would be rather more verbose to use given ML's 

anonymous function syntax.) 

Typechecking conditional expressions 

A conditional expression may return either of its branches. What should be the type of the 

following expression? 

if p then 27 else "hello" 

In the ML type system, this expression has no sensible type --- depending on 
the value of p, either branch may be returned, so 
neither int nor string describes the result value adequately. 

In ML, branches of a conditional expression must have exactly the same type. 

Sequencing 



Expression sequences in ML are written as one or more semicolon-separated 

sequence of expressions in round parenthesis. Sequences 

Expression sequences have the following semantics: 

Evaluate each expression in left-to-right order. 

1. Return the last expression evaluated as the value of the whole 
expression 

All results besides the last expression are discarded. Expression sequences 

are primarily useful for side-effecting expressions like print calls (in this class, 
you will primarily use them for inserting debugging statements): 

- val x = (print "hi\n"; 3) 

hi 

val x = 3 : int 

Thought question: What should the type checking rules for expression 
sequences be, if any? Need there be any relationship among the types of 

expressions in the sequence, as there are with if? Why or why not? 

Pattern-matching and case 

The if expression essentially provides a way to match a boolean value 
against true or false. Another way to write this in ML is as follows: 

case booleanExpr of 

    true => expr1 

  | false => expr2 

The case construct takes a value and attempts to match it against one or 

more patterns --- in this case, the two boolean constant 

patterns, true and false. If a pattern matches, then its corresponding 
expression is evaluated and returned as the value of the entire case 
expression. Matching is first-match: the pattens are tried in left-to-right order, 

and the first matching pattern's expression is evaluated and returned. 

As with if expressions, the body expressions of all branches of 
a case statement must have the same type. The reason for this restriction is 
the same as with if. 



case would be overkill if we only had boolean values; but case can be used with 
any type, not just boolean. Let's try integers: 

- val x = 3; 

val x = 3 : int 

- case x of 

=     1 => "one" 

=   | 2 => "two" 

=   | 3 => "three"; 

stdIn:40.1-43.15 Warning: match nonexhaustive 

          1 => ... 

          2 => ... 

          3 => ... 

 

val it = "three" : string 

We got the answer we expected, but why the warning? The answer is that the 
cases are not exhaustive, which means that the cases we gave do not cover 

the entire possible range of the data type being tested --- in this case, int. We 
have not enumerated all the possible integer values. 

ML does have a well-defined behavior in the case we apply the case to a bad 

value --- it raises a match failure exception: 

- case 25 of 

    1 => "one" 

  | 2 => "two"; 

stdIn:17.1-19.15 Warning: match nonexhaustive 

          1 => ... 

          2 => ... 

 

uncaught exception nonexhaustive match failure 

  raised at: stdIn:19.10 

But ML raises a warning because it's generally good programming style to cover all the cases. If 

you're a Java programmer, you might conclude that we need a way to provide a default case. 

Indeed, that is correct, but ML actually contains a better, more generally useful mechanism that 

solves this problem: it simply allows more general patterns, some of which can match more than 

one value. 

The first of these is wildcard patterns, which match any value: 

- case x of 

=   1 => "one" 

= | _ => "anything else"; 



val it = "anything else" : string 

What if we reversed the order of cases? 

- case x of 

=   _ => "anything else" 

= | 1 => "one"; 

stdIn:53.1-55.13 Error: match redundant 

          _ => ... 

    -->   1 => ... 

Oops. What's going on? Recall that ML is first-match --- the second case can never be reached, 

because the wildcard pattern will always match. More generally, ML will raise an error if you try 

to define any pattern case after some other case which subsumes it. 

The second interesting type of non-constant pattern is variable patterns, which 
not only match any value but bind that value to a variable name for later use: 

- case x of 

=     1 => "one" 

=   | y => "x is: " ^ Int.toString y; 

val it = "x is: 3" : string 

This may seem a bit silly --- aren't we just naming a value that we've either 
constructed, or already have a name for? --- but variable patterns really come 

a live when we add the third kind of pattern, constructor patterns. 

Constructor patterns 

When we discussed ML's built-in data types, we talked about constructors, 
which were functions that produced values of a given type. ML allows 
constructors to appear in patterns. Wherever subexpressions would go in a 
constructor expression, subpatterns appear in the constructor pattern. For 

example: 

- val aPair = (1, 2); 

val aPair = (1,2) : int * int 

- case aPair of 

    (0, 0)   => "origin" 

  | (1, _)   => "first is one" 

  | (2, snd) => "first is two; second is " ^ Int.toString snd 

  | (a, b)   => 

      "other value: (" ^ Int.toString a ^ "," ^ Int.toString b; 

val it = "first is one" : string 



The value is a pair (2-tuple) of ints, so all pattern cases must match pairs 
of ints. The first case has two constant patterns for the two tuple members, 

and therefore matches only the value (0, 0). The second case has a wildcard 
as its second value, and therefore matches any pair with 1 as its first element. 
The third pattern matches any pair with 2 as its first element, but then saves 
and uses second element in the expression body. The last pattern matches 
any 2-tuple, binding both elements to names, and uses them in the expression 

body. 

Any of the constructors we have seen may appear in a pattern. Here are 
some case expressions that use various constructors we've seen: 

case foo of 

    {x=0, y=0} => "origin" 

  | {x=_, y=y} => "non-origin at y-coord " ^ Int.toString y; 

 

case bar of () => "unit has only one value." 

 

case aStringList of 

    nil    => "empty" 

  | hd::tl => "first list element is: " ^ hd; 

The last of these --- matching against the nil case of a list and then against 
the cons case --- will shortly become quite familiar to you, because essentially 

all functions that operate over lists do this. 

Patterns, patterns, everywhere 

Patterns are not restricted to use in case statements. They may appear 
wherever any name binding may appear, including val declarations and 
function arguments. In fact, all name binding in the ML core language is really 
pattern matching. Here is a function that concatentates the elements of a 

string pair: 

- fn (x, y) => x ^ y; 

val it = fn : string * string -> string 

Note the use of a tuple pattern in the argument. This looks almost like a function definition in C 

or Java, where the parameters are separated by commas, but it's completely different. For 

example, the argument patterns can be a record rather than a tuple, or it can contain nested 

subpatterns with structure rather than simply names: 

- fn {first=firstName, last=lastName} => 



    firstName ^ " " ^ lastName; 

val it = fn : {first:string, last:string} -> string 

 

- fn {x=_:int, y=(a:int, b:int), z=z:string} => 

    Int.toString a ^ z ^ Int.toString b 

val it = fn : {x:'a, y:int * int, z:string} -> string 

For the last of the above, note the use of type ascriptions inside the pattern, and the nested tuple 

subpattern. 

Functions use case at top-level so often that ML also has a special syntactic 
sugar which allows you to define a function in multiple cases. The following 

two functions are exactly equivalent: 

- fun emptyTest aList = 

    case aList of 

      nil     => "empty!" 

    | (x::xs) = "not empty; first elem: " ^ x; 

val emptyTest = fn : string list -> string 

 

- fun emptyTest nil     = "empty!" 

    | emptyTest (x::xs) = "not empty; first elem: " ^ x; 

val emptyTest = fn : string list -> string 

Here is how we use a val binding to take apart the elements of a record: 

- aPoint = {x=1, y=2}; 

val aPoint = {x=1,y=2} : {x:int, y:int} 

- val {x=x, y=y} = aPoint; 

val x = 1 : int 

val y = 2 : int 

Notice that you can bind more than one name at a time. For records, it is so 
common to bind field names to variables of the same name that ML provides 
a syntactic sugar which allows you to write each field name once, omitting 

the =name: 

- val {x,y} = aPoint; 

val x = 1 : int 

val y = 2 : int 

Val bindings do not provide a way to handle multiple cases in a pattern, so they fail if there is no 

match. 



How patterns match 

This is the complete algorithm, in ML-like pseudocode, for determining whether a value 

matches a pattern: 

fun match(value, pattern) = 

  case pattern of 

    constant => if value equals the constant then true else false 

  | wildcard => true 

  | variable => bind value to variable name; true 

  | constructor => 

      if value has same constructor then 

         match subpatterns of pattern with corresponding 

            parts of value 

         if all parts match then true else false 

      else false 

Notice that this definition is recursive. Speaking of which... 

Recursive functions 

Functions in ML may be recursive, and must be bound to a name (Thought exercise: why can't 

ML anonymous functions be recursive?): 

- fun length nil = 0 

=   | length (x::xs) = 1 + length xs; 

val length = fn : 'a list -> int 

Recursive functions, as this example shows, are ideal for handling recursive data structures like 

lists, trees, etc. Inductive recursive definitions, whether for data or for functions, are defined in 

cases: 

At least one base case, where the recursion "bottoms out" 

At least one inductive case, where the recursion continues. 

For lists, the base data case is nil, and the inductive data case is cons. The 
length function likewise has two cases, one for the base case and one for the 
inductive case. 

More generally, to write almost any function over a recursive data type, you generally follow a 

simple formula: 

Look at the cases of the data type. 

For each data case, write one or more function cases: 

For a base case, (usually) compute the appropriate result directly. 



For an inductive case, 

Compute a partial result for the parts directly available (e.g., the head of the list); 

Call recursively on the recursive portion(s) of the data structure (e.g., the tail of the list). 

If necessary, combine the result of the direct and recursive computations. 

This recursive formula will occur again and again in your functional programming. Learn it well, 

and it will help you organize your thinking about recursive data structures even in non-

functional languages. 

(Aside: what's this 'a list type that ML infers for the length function's 
argument? Well, if you examine the body of length, there's actually no 
indication as to theelement type of this list. The list could be any type --- and 
this makes perfect sense, since a function that takes the length of a list never 
needs to know the type of that list's elements. ML's type system allows this 
function to be polymorphic over different types of lists --- i.e., the same 
function can be applied to different types. 'a is a type variable --- it stands for 
"any type". When the function is applied to an argument, the type variable will 
be instantiated with the type of its argument's element type. We'll discuss type 

variables and polymorphism in much more detail next week.) 

Recursion vs. iteration 

In Java, you wouldn't write a recursive length function. You would use a loop: 

class Node { Object o; Node next; } 

... 

int length = 0; 

for (Node i = List.firstNode; i != null; i = i.next) { 

    length++; 

} 

Observe, however, that a loop of this kind requires mutation: the i = 

i.next changes what i points to, and the length field must be incremented. In 
functional programming, you typically use recursion instead of iteration. 
Functional programming advocates claim recursion is typically clearer and 
less error-prone: 

It is "intuitively obvious" that the ML length function is correct (indeed, it is hard to imagine 

how to get it wrong), whereas iteration presents many opportunities for error because of the 

numerous assignments. 



The ML length function is "natural" because it parallels directly the inductive definition of the 

list data type. 

On the other hand, naively implemented recursion often has greater overhead than naively 

implemented iteration: 

Time and space overhead for procedure call, stack allocation, and return. 

The "natural" inductive definitions of some algorithms are less efficient efficient than iterative 

definitions. 

Tail recursion 

The length function, as defined above, has one important drawback. It must 

keep an activation record on the procedure call stack for every recursive call. 

But this is not true of all recursive functions; or, of all functions that call 
another function. In particular, consider the case where a function returns 
directly the value of another function --- this is called a tail call. A very simple 

example: 

fun f aList = length aList; 

In this case, it is clear that once f passes control to length, then the compiler 

need not keep the activation record for length around (including, e.g., the 
space for the aList parameter), because f does nothing after length returns. 
The compiler can reuse that space on the call stack for the activation record of 

the length call. 

This space-saving optimization is called tail call elimination, because the call is 
at the "tail" of the function. This optimization plays a crucial role in functional 
language implementation, because of the heavy use of recursion; indeed, 
most functional languages specify that implementations must perform tail call 
elimination. Here are a couple of tail-recursive functions: 

fun last nil       = raise Empty 

  | last (x::nil)  = x 

  | last (_::rest) = last rest; 

 

fun includes (aValue,  nil)     = false 

  | includes (aValue, (x::xs)) = 

    if aValue = x then 

        true 

    else 



        includes (aValue, xs) 

Every case of these functions either "bottoms out" or directly returns the result of a recursive 

call. Therefore, they are tail recursive. 

So what prevents a function from being tail recursive? And is there any way 
to make a function tail recursive when it isn't to begin with? It is instructive to 

examine ordinary tail calls first. Here is a function that resembles f, but 
is not tail call: 

fun g aList = 1 + length aList; 

This function's body does not tail call, because the result of the call is not 
returned directly --- g must do more work (namely, adding one to the result) 
before returning. The compiler must keep the activation record for g around 
while it is waiting for length to return. 

Well, what if we could "push down" that work into the callee, so that g didn't 
have work remaining? That would be great, but in general the caller has no 
way to modify what the callee will do. On the other hand, in a recursive 
function, the callee is the caller... 

fun helper (nil,   lengthSoFar) = lengthSoFar 

  | helper (x::xs, lengthSoFar) = helper (xs, lengthSoFar + 1); 

 

fun length aList = helper (aList, 0); 

How these functions work: 

1. helper is tail-recursive, and has an extra parameter that keeps track of 
the "length so far". 

2. For nil, helper returns the length computed so far, because an empty 
list cannot add more length to the list. 

3. For cons, helper adds one to lengthSoFar and calls itsself on the tail of 
the list. 

4. To complete the function, we add a "driver", length, that invokes the 
helper on its argument with the whole list and a length so far of zero. 

This sort of conversion can be performed on any singly recursive function. 
Simply add a helper function that keeps the "results computed so far" as a 



parameter, and invoke it with a suitable initial value. See Ullman 3.5.3 

(background in 3.2, 3.3.1) for a discussion of reverse using this trick. 
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Functions and patterns, supplementary notes 

What is functional programming? 

Functional programming is a style that emphasizes: 

Expression-oriented programming 

Heavy use of functions as values: higher-order and anonymous functions 

1. Side-effect-free code; referential transparency 

Recursion instead of iteration 

Secondary characteristics (usually, but not always part of FP) include: 

Strong typing 

Garbage collection 

Emphasis on lists as a data type 

Language Construct X in a Nutshell 

All language constructs (in a statically typed language) have three parts: 

1. 1: Syntax: What does it look like? 

Semantics: What does it mean?; in two parts: 

1. 2: Dynamic semantics: What does it do at runtime? 
2. 3: Static semantics: How is it typechecked? This consists of at 

least two parts: 

What subexpressions are legal and illegal in the type system? Alternatively phrased: What 

constraints does the type system place on well-typed instances of construct X? 

For well-typed constructs, what is the resulting type of the construct? 

Stating these three properties gives you the essence of the language construct. When language 

designers design a language, they go through these three steps for each construct --- either 

consciously or unconsciously. 

In these notes, we will do two examples informally, to show this formula in action. 

if/then/else in a Nutshell 



Syntax:: If/then/else expressions have the syntactic form: 

if expr1 then expr2 else expr3 

Dynamic semantics: First, expr1 is evaluated to a value v. If v has the 

boolean value true, then expr2 is evaluated and returned. Otherwise, v has 
the boolean value false, and expr3 is evaluated and returned. 

Static semantics: 

1. Constraints: expr1 must have the type bool. It must be possible to 
unify expr2 and expr3 to the same type; call this type T. 

2. Result type: The expression has type T 

Functions in a Nutshell 

There are two constructs related to functions: definition (sometimes 
called abstraction in the programming languages literature) and application 
(a.k.a. function call). 

Function definition 

Syntax: Function definitions have the syntactic form 

fn pattern => returnValue 

Dynamic semantics: A function definition constructs a closure that contains 
two parts: 

The code of the compiled function. 

An environment pointer that "captures" variables in the surrounding environment. 

Static semantics: 

1. Constraints: A function must have a well-typed body, assuming the 
names bound in its argument pattern have the inferred types (and any 
references to enclosing names have the proper types, etc.). 

2. Result type: The type of the function is argType -> returnType, 
where argType and returnType are inferred from the argument pattern 

and body. 



Function application 

Syntax: Function applications have the syntactic form 

expr1 expr2 

Dynamic semantics: First, expr1 is evaluated to a value value1. 
Second, expr2 is evaluated to a value value2. Then, value1's function body is 
evaluated in the environment produced by matching value2 against the 

argument pattern. 

Static semantics: 

1. Constraints: A function application is well-typed if expr2's type can be 
unified with expr1's argument type. 

2. Result type: The type of the function application is the result type 

of expr1* 

* With polymorphic type variables appropriately instantiated. We'll learn about polymorphic types in the next couple of lectures.  

Sample exercises 

The answers to the following exercises are available here. 

Which of the following pattern-matches fail? Which succeed? For successful matches, draw a 

diagram of the bindings that result, and annotate each name binding with its type. For 

unsuccessful matches, describe briefly the reason for the failure. 

1. val (a, _) = (("hi", "bye"), fn x => x + 1); 

2. val (_, b) = (("hi", "bye"), fn x => x + 1); 

3. val {a=a, b=b} = ({a="hi", b="bye"}, fn x => x + 1) 

4. val (x:char)::xs = ["a","b","c"]; 

5. val x::y::z = ["a","b","c"]; 

6. val x::y::z = ["a","b"]; 

7. val x::y::z = ["a"]; 

8. val x::y::(z:string list)::zz = ["a", "b", "c"]; 

9. val (a:int->int, b) = (fn x => x + 1, fn x => x ^ "1"); 

http://courses.cs.washington.edu/courses/cse341/04wi/lectures/03-ml-functions-solutions.html


10. val (a, b) = (fn x => x + 1, {foo=fn x => x ^ "1", bar=fn x => x 

* x}); 

For each of the following recursive functions, state briefly why it isn't properly tail-recursive, 

and then write a tail-recursive version. 

11. fun sumN 0 = 0 

12.   | sumN n = n + sumN (n-1); 

13.  
14. fun factorial 0 = 1 

15.   | factorial n = n * factorial (n-1); 

16.  
17. fun joinStrings nil     = "" 

18.   | joinStrings (x::xs) = x ^ joinStrings xs; 

19.  
20. fun countDown 0 = [0] 

21.   | countDown n = n::(countDown (n-1)); 

22.  
23. fun countUp 0 = [0] 

24.   | countUp n = countUp (n-1) @ [n]; 

25.  
3. Try writing the syntax, dynamic semantics, and static semantics for the 

following language constructs.* 

Integer addition. (Actually, this is a function application --- using infix operator syntax --- but 

pretend it's a primitive.) 

List cell cons. 

1. val binding. (You do not have to describe pattern matching --- 
assume this has been defined.) 

2. let expressions. This can be defined two ways --- as a "primitive" 
construct, from the ground up, or as a syntactic sugar for a series 
of function applications.** Define it both ways. 

* For most of these constructs, the static semantics for full ML uses polymorphic types. For now pretend ML only has 

monomorphic types like int, string, or (int * int * int). 

** Actually, there are slightly different typechecking requirements between function application and let, but the 

distinctions are beyond the scope of your current knowledge. 
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: Functions and patterns, solutions to supplementary 
exercises 

Which of the following pattern-matches fail? Which succeed? For successful matches, draw a 

diagram of the bindings that result, and annotate each name binding with its type. For 

unsuccessful matches, describe briefly the reason for the failure. 

1. val (a, _) = (("hi", "bye"), fn x => x + 1); 

Succeeds. 

 

2. val (_, b) = (("hi", "bye"), fn x => x + 1); 

Succeeds. 

 

3. val {a=a, b=b} = ({a="hi", b="bye"}, fn x => x + 1) 

Fails with a static type error. The pattern is a record with {a, 
b} fields; the value is a tuple whose first element is a record 
with {a, b} fields. 

4. val (x:char)::xs = ["a","b","c"]; 

Fails with a static type error. The pattern is a cons whose head 

has the ascribed type char; therefore, the type of the entire cons 
pattern is char list. The values is a cons of type string list. 

5. val x::y::z = ["a","b","c"]; 

Succeeds. The pattern is a two-level cons; this can be matched 
against the list expression, which has at least two cons cells 

http://courses.cs.washington.edu/courses/cse341/04wi/index.html
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(actually it has three:"a"::"b"::"c"::nil). 

 

6. val x::y::z = ["a","b"]; 

Succeeds. The pattern has two conses, and the value has two 
conses. 

 

7. val x::y::z = ["a"]; 

Fails with a dynamic match error. The left-hand (top-level) cons 
pattern can match, but the right-hand (inner) cons pattern fails 

against nil. Note that, unlike the previous two failures, this pattern 
match is statically well-typed --- the failure only occurs when 

value nil is dynamically matched against the cons pattern. 

8. val x::y::(z:string list)::zz = ["a", "b", "c"]; 

Fails with a static type error. Cons associates right-to-left, 

so z appears on the left-hand-side of a cons operator. Therefore, 
the ascribed type of z(string list must be the element type of the 
whole list pattern. The entire list pattern must therefore have 

type string list list (list of string lists). The value on the right-
hand side is only string list. Therefore, the declaration does not 

type check, and is statically rejected. 

9. val (a:int->int, b) = (fn x => x + 1, fn x => x ^ "1"); 



Succeeds. 

 

10. val (a, b) = (fn x => x + 1, {foo=fn x => x ^ "1", bar=fn x => x 

* x}); 

Succeeds. 

 

For each of the following recursive functions, state briefly why it isn't properly tail-recursive, 

and then write a tail-recursive version. 

11. fun sumN 0 = 0 

12.   | sumN n = n + sumN (n-1); 

13. fun sumN n = 

14.     let 

15.         fun helper (sum, 0) = sum 

16.           | helper (sum, n) = helper (sum+n, n-1) 

17.     in 

18.         helper (0, n) 

19.     end; 

20.  
21. fun factorial 0 = 1 

22.   | factorial n = n * factorial (n-1); 

23. fun factorial n = 

24.     let 

25.         fun helper (m, 0) = m 

26.           | helper (m, n) = helper (m*n, n-1) 

27.     in 

28.         helper (1, n) 

29.     end; 

30.  
31. fun joinStrings nil     = "" 

32.   | joinStrings (x::xs) = x ^ joinStrings xs; 

33. fun joinStrings aList = 

34.     let 



35.         fun helper (joined, nil) = joined 

36.           | helper (joined, x::xs) = helper (joined ^ x, 

xs) 

37.     in 

38.         helper ("", aList) 

39.     end; 

40.  
41. fun countDown 0 = [0] 

42.   | countDown n = n::(countDown (n-1)); 

43. fun countDown n = 

44.     let 

45.         fun helper (counted, 0) = 0::counted 

46.           | helper (counted, n) = helper (n::counted, n-1) 

47.  

48.         fun reverse (reversed, nil) = reversed 

49.           | reverse (reversed, x::xs) = reverse 

(x::reversed, xs); 

50.     in 

51.         reverse ([], helper ([], n)) 

52.     end; 

53.  
54. fun countUp 0 = [0] 

55.   | countUp n = countUp (n-1) @ [n]; 

56. fun countUp n = 

57.     let 

58.         fun helper (counted, 0) = 0::counted 

59.           | helper (counted, n) = helper (n::counted, n-1) 

60.     in 

61.         helper ([], n) 

62.     end; 

63.  
4. Try writing the syntax, dynamic semantics, and static semantics for the 

following language constructs.* 

Integer addition. (Actually, this is a function application --- using infix operator syntax --- but 

pretend it's a primitive.) 

 

Syntax: expr1 + expr2. 

Dynamic semantics: Evaluate expr1 to a value v1. 
Evaluate expr2 to a value v2. The result of the expression is the 

integer addition of v1 and v2, unless the result overflows, in which 
case an exception is raised. 



Static semantics: 

1. Constraints: Both operands must have type int. 

2. Result type: The result is type int. 

 
List cell cons. 

 

Syntax: expr1 :: expr2. 

Dynamic semantics: Evaluate expr1 to a value v1. 
Evaluate expr2 to a value v2. The result of the expression is a 
fresh cons cell whose head points to v1 and whose tail points 

to v2. 

Static semantics: 

3. Constraints: Suppose the left-hand operand has type T. In 

this case, the right-hand operand must have type T list. 
4. Result type: The result has type T list. 

 

2. val binding. (You do not have to describe pattern matching --- 
assume this has been defined.) 

 

Syntax: val pattern = expr. 

Dynamic semantics: Evaluate expr to a value v. Then, attempt to 
match v against pattern, yielding zero or more bindings to 
variables { x1, x2, ... xN }. If the match succeeds, add the bindings 
to the current environment stack. If the match fails, add no 

bindings, but raise an exception. 

Static semantics: 

1. Constraints: It must be possible to assign the same 
type T to both the expression and the pattern. 



2. Result type: This is not an expression; it is a declaration, so 
it has no result type. However, the bindings do have types: 
they will have the type corresponding to their position in the 

pattern. 

(You might complain that some of this definition amounts to hand-
waving; and you would be right. Defining the precise semantics of 
name binding in a formal fashion requires some moderate 
complexity. For this class, an informal description such as this one 

will suffice.) 

 

3. let expressions. This can be defined two ways --- as a "primitive" 
construct, from the ground up, or as a syntactic sugar for a series 

of function applications.** Define it both ways. 

 

"Primitive" definition 

Syntax: let declList in expr end. 

Dynamic semantics: Evaluate each declaration in declList in 
sequence, producing zero or more bindings to be added to the 

current environment. Then, evaluate expr in the current 
environment. 

Static semantics: 

1. Constraints: Each declaration must be well-typed. The body 

expression must be well-typed based in the environment 

produced by all the declarations. 

2. Result type: The result type of the entire expression is 

the result type of the body expression. 

 
Syntactic sugar definition 

Syntax: let declList in expr end. 

Dynamic semantics: First, rewrite the term as a series of 

nested let expressions, with only one declaration per let, as 

follows: let decl in (letdecl in ... in expr end ... end) end). 

Then, rewrite each let-expression let 

val pattern = expr1 in expr2 end as a function 



call ((fn pattern =>expr2) expr1). Evaluate the resulting 

expression. 

Static semantics: Perform the rewriting specified in the dynamic 

semantics, except for the evaluation step. Typecheck the 

resulting rewritten expression. 

* For most of these constructs, the static semantics for full ML uses polymorphic types. For now pretend ML 

only has monomorphic types like int, string, or (int * int * int). 

** Actually, there are slightly different typechecking requirements between function application and let, but 
the distinctions are beyond the scope of your current knowledge. 
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More on scoping of names 

Lexical scoping 

We have so far discussed the notion of scope (i.e., where a name binding is 
visible) rather informally. I would like to make your intuition more precise by 

describing ML's scoping rules in more detail. 

Bindings in ML live in environments. Conceptually, each environment (except 

the top-level environment) consists of 

a list of name-value pairs (the bindings in this environment); and 

1. a pointer to the "parent" environment. This pointer refers to the textually 
enclosing environment at the place where the environment is first 
defined. (The top-level environment differs only in that it does not have 

a parent pointer.) 

Consider the following code: 

- val x = 5; 

val x = 5 : int 

- fun f y = x + y;              (* 1 *) 

val f = fn : int -> int 

- val x = 7;                    (* 2 *) 

val x = 7 : int 

- f 10;                         (* 3 *) 

val it = 15 : int 

In this code, the reference to x inside f refers to the binding x = 5. Regardless 
of whatever other bindings are later added to the top-level environment, the 

body of f will always be evaluated in that environment. 

Figs. 1-3 show how this is implemented, conceptually. In Fig. 1, we have 

evaluated the declaration of f (at the line marked (* 1 *) above), which 
includes evaluating the function value. Unlike previous diagrams of function 
values in memory, we have included a picture of the value, sometimes called 

a closure, which contains two parts: 

The code pointer, which points to the actual code to be evaluated. 

1. The environment pointer, which points to the parent environment at the 

point of function definition. We say that the definition of f "captures" the 
environment in a "closure". Notice that this points to a part of the 



environment that includes f --- this is necessary for recursive function 
definitions. 

 
Fig. 1: Diagram of memory after declaration fun f y = x + y. 

Fig. 2 shows what happens when we evaluate val x = 7 (at the line marked (* 

2 *)). Another binding is added that shadows the previous binding --- but only 
for later declarations. The closure continues to point to the older environment. 

 
Fig. 2: Diagram of memory after declaration val x = y. 

Finally, Fig. 3 shows what happens when we evaluate the function bound to f. 
First, a function activation record is created for this function. This activation 
has a pointer for the parent environment. Second, a the pointer from the 
closure is copied into the parent environment slot. Third, the actual argument 
value is matched against the function's argument pattern --- in this case, 
simply binding 10 to y. Finally, the function is executed in the environment of 

the activation --- lookup of y yields 10, and lookup of x yields 5. The 
expression x + y evaluates to 15, and this value is returned. 



 
Fig. 3: Diagram of memory during function invocation. 

Note that this is only the conceptual picture of what's going on. An optimized 
implementation might allocate activation records on a stack (perhaps the 
same stack as the top-level environment), and it might copy the captured 
bindings into the closure instead of keeping a pointer to the original 
environment. 

Lexical vs. dynamic scoping 

The scoping rule used in ML is called lexical scoping, because names refer 

to their nearest preceding lexical (textual) definition. 

The opposite scheme is called dynamic scoping --- under dynamic scoping, 
names from outer scopes are re-evaluated using the most recently executed 
definition, not the one present when the code was originally written. Under 

dynamic scoping, the above transcript would return 17 for the value of f 10. 

All sensible languages use lexical scoping. Dynamic scoping is of mostly historical interest --- 

early implementations of Lisp used dynamic scoping, which Joseph McCarthy (the inventor of 

Lisp) simply considered a bug. In languages that use dynamic scoping, functions are difficult to 

use and do not serve as well-behaved abstractions --- it is possible to make a function misbehave 

in ways that the writer of the function never anticipated, simply by accidentally redefining some 

name that may be used in the function. 

Nested scopes: an extended example 

So far, we have examined four contexts where name bindings may take place: 

The top-level environment: bindings are visible until they are shadowed by later bindings. 



The declaration parts of let-expressions: bindings are visible until the end of the let-expression 

body, unless they are shadowed by later bindings in the same let-expression. 

Function arguments: bindings are visible in the function body, unless they are shadowed by 

nested binding constructs. 

1. Rules of case statements: bindings are visible only inside the body of the 
rule, and may be shadowed by nested binding constructs inside the 

body. 

These all follow rules similar to function arguments. For example, when one rule of a case 

expression is evaluated, a fresh environment is created with a parent pointer to the textually 

enclosing scope. 

You may find it useful to figure out the scope of various names in the following code. 

val a = 1; 

val b = 3; 

val f = fn x => x + a + b; 

val a = 2; 

fun g (foo, bar) = 

    let 

        val x = f a; 

        val y = fn foo => 

            foo + x + let val n = 4 in n * n end; 

        val x = y bar; 

    in 

        case foo of 

            nil   => 0 - x 

          | x::_ => x 

    end; 

Let-expressions and function application 

Let-expressions are actually roughly equivalent to function applications --- witness the following 

equivalence: 

- let val x = 5 in x + x end; 

val it = 10 : int 

- (fn x => x + x) 5 

val it = 10 : int 

In both cases, we bind a value to a name, then evaluate an expression in the environment 

produced by that name binding. 

Let-expressions with more than one binding can be rewritten as a sequence of let-expressions, 

which in turn can be rewritten as a sequence of function applications: 

- let val x = 5 



    val y = 7 in 

    x + y 

end; 

val it = 12 : int 

- let val x = 5 in 

    let val y = 7 in 

        x + y 

    end 

end; 

val it = 12 : int 

- (fn x => 

    (fn y => 

       x + y 

    ) 7) 5; 

val it = 12 : int 

Thought exercise: Why can't a let-expression with more than one binding simply be translated 

into a function taking a tuple of values? Hint: consider the let-expression 

let 

  val x = 5; 

  val y = x + 1 

in 

  x + y 

end; 

  



Linear Search 

Ver1: 

use "/home/sak/sml/programs/random.sml"; 

 

local 

    (* INV: 0<=i<= l = len(L) /\ forall j: 0<=j<i: a =/= L[j] *) 

    fun linsearch (a, [], i) = i 

      | linsearch (a, h::T, i) = if a=h then i else linsearch (a, T, i+1) 

 

in fun search (a, L) =  

       let val l = length L  

    val i = linsearch (a, L, 0) 

       in  if i >= l then print ("not found\n") 

    else print ("found at index "^Int.toString(i)^"\n") 

       end 

end 

 

val A = mkIntRandlist 1000; 

val a = randomInt (); 

search (a, A); 

val b = List.nth (A, 786); 

search (b, A) 

 

Ver2:Iterative 

use "/home/sak/sml/programs/random.sml"; 

val A = Array.fromList (mkIntRandlist 1000); 



 

local 

 

    fun linsearch (a, A, i, l) =  

    (* INV: 0<=!refi<= l = len(L) /\ forall j: 0 <= j < !refi: a <> A[j] *) 

 let val refi = ref i; 

 in (while (!refi < l) andalso (a <> sub (A, !refi)) do  

      refi := !refi+1 

    ); 

    !refi 

 end 

 

in fun search (a, A) =  

       let val l = Array.length A  

    val i = linsearch (a, A, 0, l) 

       in  if i >= l then print ("not found\n") 

    else print ("found at index "^Int.toString(i)^"\n") 

       end 

end 

 

val a = randomInt (); 

search (a, A); 

val b = sub (A, 786); 

search (b, A) 

Binary Search 

(* Given a sorted array to implement binary search *) 



 

open Array; 

 

(* A[!lo..!hi] is the slice of the array A that needs to be searched  

   !mid is the value returned -- !mid = n if x is not in the array. 

 

   Assume R is an irreflexive total order on the domain of A and  

   A is sorted according to R 

*) 

fun binsearch (A, x) =  

    let val n = length A; 

   val lo = ref 0 and hi = ref n; 

   val mid = ref ((!lo + !hi) div 2); 

        

    in  (* INV: ordered A /\ (forall i: 0<= i < lo: x <> A[i]) /\ 

           (forall j: hi < j < n: x <> A[j]) /\  

                0<=!lo <= !mid <= !hi <= n /\ 

                2*!mid <= lo+hi <= 2*!mid +1 

           

           Notice that mid = lo if hi = lo or hi = lo+1  and 

    !lo <  !mid <  !hi only if !hi - !lo > 1 

        *) 

   while ((!hi - !lo > 1) andalso (x <> sub (A, !mid))) do 

   ( 

     if x < sub (A, !mid) then hi := !mid - 1 

     else (* sub (A, !mid) < x *) lo := !mid + 1; 

     mid := (!lo + !hi) div 2 



    ); 

   (* INV /\ ((!hi - !lo <= 1) \/ (x = sub (A, !mid)) *) 

          if x = sub (A, !mid) then SOME (!mid) 

   else NONE 

    end; 

(* try it *) 

 

open Array; 

val A = fromList [~24, ~24, ~12, ~12, 0, 0, 1, 20, 45, 123]; 

binsearch (A, 0); 

binsearch (A, ~24); 

binsearch (A, 123); 

binsearch (A, 100); 

binsearch (A, ~25); 

binsearch (A, 124); 

  



selection-sort-fun.sml 

 

 

local 

    exception emptyList; 

    (* findMin finds the minimum element in the list and removes it *) 

    fun findMin  [] = raise emptyList 

      | findMin  [h] = (h, []) 

      | findMin  (h::t) =  

        let 

            val (m, tt) = findMin  t; 

   

        in  if m < h 

     then (m, h::tt)  

     else (h, t) 

        end; 

  

in fun selSortFun  [] = [] 

     | selSortFun  [h] = [h] 

     | selSortFun  (L as h::t) =  

       let  

           val (m, LL) = findMin  L 

       in m::(selSortFun  LL) 

       end; 

end 

 

 



val sf = selSortFun; 

sf [~12, ~24, ~12, 0, 123, 45, 1, 20, 0, ~24]; 

selection-sort-imp.sml 

 

 

 

(* IMPERATIVE *) 

open Array; 

 

fun printarray A = 

    let val n = length A; 

 val i = ref 0; 

    in  ( print ("         ["); 

          while (!i < n) do 

          (  print (Int.toString (sub (A, !i))); 

      if (!i < n-1) then print (",") else ();  

             i := !i +1 

          ); 

          print ("]\n") 

 ) 

    end; 

 

(* 

## Assume A0 is the initial value of the array A[0..n-1] 

## ordered (A, p, q) = forall j: 0 <= p <= j < q < n -> A[j] <= A[j+1] 

## leftmin (A, p ) = forall i: 0 <= i < p < n: forall j: p <= j< n: A[i] <= A[j] 

*) 



 

fun swap (A, i, j) =  

    let val temp = sub (A, i) 

    in (update (A, i, sub (A, j)); 

        update (A, j, temp) 

       ) 

    end; 

     

local 

     fun findIndexOfMin (A, i, n) = 

  let val m = ref i and k = ref i 

      (*  

         INV2: 0<= i <= !m <= !k /\  

                       forall j: 0<= i<=j < k <= n: A[m] <= A[j] 

      *) 

  in while !k < n do 

                  ( 

                    if sub (A, !k) < sub (A, !m) 

      then m := !k  

                    else (); 

      k := !k + 1 

    ); 

                  !m 

  end 

 

in fun selSortImp A = 

   let  



     val n = length A; (* A[0..n-1] *) 

     val p = ref 0; 

     val q = ref 0; 

 

    (*  

       ordered (A, i, k) = forall j: 0 <= i <= j < k < n-1: A[j] <= A[j+1] 

       leftmin (A, p) = forall i, j: 0 <= i < p <= j < n: A[i] <= A[j] 

 

       INV1: perm (A, A0) & 0<=p<=n & ordered (A, 0, p) & leftmin (A, p)  

 

       BF : n-p 

    *) 

    in (   

          while !p < n do 

          ( 

             q := findIndexOfMin (A, !p, n);  

             swap (A, !q, !p); 

      p := !p + 1 

          ); (* the algo terminates once !p = n *) 

          printarray A 

       ) 

   end 

end; 

 

val si = selSortImp; 

si (fromList [~12, ~24, ~12, 0, 123, 45, 1, 20, 0, ~24]); 

  



Insertion sort[edit] 

Insertion sort for lists of integers (ascending) is expressed concisely as follows: 

fun ins (n, []) = [n] 

   | ins (n, ns as h::t) = if (n<h) then n::ns else h::(ins (n, t)) 

 val insertionSort = List.foldr ins [] 

This can be made polymorphic by abstracting over the ordering operator. Here we use the symbolic name <<  for 

that operator. 

fun ins' << (num, nums) = let 

    fun i (n, []) = [n] 

     | i (n, ns as h::t) = if <<(n,h) then n::ns else h::i(n,t) 

   in 

     i (num, nums) 

   end 

  fun insertionSort' << = List.foldr (ins' <<) [] 

The type of insertionSort'  is ('a * 'a -> bool) -> ('a list) -> ('a list) . 

§Mergesort[edit] 

Main article: Merge sort 

Here, the classic mergesort algorithm is implemented in three functions: split, merge and mergesort. 

The function split  is implemented with a local function named loop , which has two additional parameters. The 

local function loop  is written in a tail-recursivestyle; as such it can be compiled efficiently. This function makes use 

of SML's pattern matching syntax to differentiate between non-empty list ( x::xs ) and empty list ( [] ) cases. For 

stability, the input list ns  is reversed before being passed to loop . 

(* Split list into two near-halves, returned as a pair. 

 * The “halves” will either be the same size, 

 * or the first will have one more element than the second. 

 * Runs in O(n) time, where n = |xs|. *) 

http://en.wikipedia.org/w/index.php?title=Standard_ML&action=edit&section=9
http://en.wikipedia.org/wiki/Standard_ML#Mergesort
http://en.wikipedia.org/w/index.php?title=Standard_ML&action=edit&section=10
http://en.wikipedia.org/wiki/Merge_sort
http://en.wikipedia.org/wiki/Tail_recursion


  local 

    fun loop (x::y::zs, xs, ys) = loop (zs, x::xs, y::ys) 

      | loop (x::[], xs, ys) = (x::xs, ys) 

      | loop ([], xs, ys) = (xs, ys) 

  in 

    fun split ns = loop (List.rev ns, [], []) 

  end 

The local-in-end syntax could be replaced with a let-in-end syntax, yielding the equivalent definition: 

fun split ns = let 

  fun loop (x::y::zs, xs, ys) = loop (zs, x::xs, y::ys) 

    | loop (x::[], xs, ys) = (x::xs, ys) 

    | loop ([], xs, ys) = (xs, ys) 

  in 

    loop (List.rev ns, [], []) 

  end 

As with split, merge also uses a local function loop for efficiency. The inner loop  is defined in terms of cases: when 

two non-empty lists are passed, when one non-empty list is passed, and when two empty lists are passed. Note the 

use of the underscore ( _ ) as a wildcard pattern. 

This function merges two "ascending" lists into one ascending list. Note how the accumulator out  is built 

"backwards", then reversed with List.rev  before being returned. This is a common technique—build a list 

backwards, then reverse it before returning it. In SML, lists are represented as imbalanced binary trees, and thus it is 

efficient to prepend an element to a list, but inefficient to append an element to a list. The extra pass over the list is 

a linear time operation, so while this technique requires more wall clock time, the asymptotics are not any worse. 

(* Merge two ordered lists using the order lt. 

 * Pre: the given lists xs and ys must already be ordered per lt. 

 * Runs in O(n) time, where n = |xs| + |ys|. *) 

http://en.wikipedia.org/wiki/Linear_time


 fun merge lt (xs, ys) = let 

   fun loop (out, left as x::xs, right as y::ys) = 

           if lt (x, y) then loop (x::out, xs, right) 

           else loop (y::out, left, ys) 

     | loop (out, x::xs, []) = loop (x::out, xs, []) 

     | loop (out, [], y::ys) = loop (y::out, [], ys) 

     | loop (out, [], []) = List.rev out 

   in 

     loop ([], xs, ys) 

   end 

The main function. 

(* Sort a list in according to the given ordering operation lt. 

 * Runs in O(n log n) time, where n = |xs|. 

 *) 

 fun mergesort lt xs = let 

   val merge' = merge lt 

   fun ms [] = [] 

     | ms [x] = [x] 

     | ms xs = let 

         val (left, right) = split xs 

         in 

           merge' (ms left, ms right) 

         end 

   in 



     ms xs 

   end 

Also note that the code makes no mention of variable types, with the exception of the :: and [] syntax which signify 

lists. This code will sort lists of any type, so long as a consistent ordering function lt can be defined. Using Hindley–

Milner type inference, the compiler is capable of inferring the types of all variables, even complicated types such as 

that of the lt function. 

§Quicksort[edit] 

Quicksort can be expressed as follows. This generic quicksort consumes an order operator << . 

 fun quicksort << xs = let 

    fun qs [] = [] 

      | qs [x] = [x] 

      | qs (p::xs) = let 

         val (less, more) = List.partition (fn x => << (x, p)) xs 

         in 

           qs less @ p :: qs more 

         end 

    in 

      qs xs 

    end 

§Expression language[edit] 

Note the relative ease with which a small expression language is defined and processed. 

exception Err 

 

 datatype ty 

   = IntTy 

http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_inference
http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_inference
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   | BoolTy 

 

 datatype exp 

   = True 

   | False 

   | Int of int 

   | Not of exp 

   | Add of exp * exp 

   | If of exp * exp * exp 

 

 fun typeOf (True) = BoolTy 

   | typeOf (False) = BoolTy 

    | typeOf (Int _) = IntTy 

    | typeOf (Not e) = if typeOf e = BoolTy then BoolTy else raise Err 

   | typeOf (Add (e1, e2)) =  

       if (typeOf e1 = IntTy) andalso (typeOf e2 = IntTy) then IntTy else raise Err 

   | typeOf (If (e1, e2, e3)) =  

       if typeOf e1 <> BoolTy then raise Err 

       else if typeOf e2 <> typeOf e3 then raise Err 

       else typeOf e2 

  

 fun eval (True) = True 

   | eval (False) = False 

    | eval (Int n) = Int n 

    | eval (Not e) =  



      (case eval e 

         of True => False 

          | False => True 

           | _ => raise Fail "type-checking is broken") 

   | eval (Add (e1, e2)) = let 

        val (Int n1) = eval e1 

       val (Int n2) = eval e2 

       in 

         Int (n1 + n2) 

       end 

   | eval (If (e1, e2, e3)) =  

       if eval e1 = True then eval e2 else eval e3 

 

 fun chkEval e = (ignore (typeOf e); eval e) (* will raise Err on type error *) 

§Arbitrary-precision factorial function (libraries)[edit] 

In SML, the IntInf module provides arbitrary-precision integer arithmetic. Moreover, integer literals may be used as 

arbitrary-precision integers without the programmer having to do anything. 

The following program "fact.sml" implements an arbitrary-precision factorial function and prints the factorial of 120: 

fun fact n  : IntInf.int = 

      if n=0 then 1 else n * fact(n - 1) 

val () = 

      print (IntInf.toString (fact 120) ^ "\n") 

and can be compiled and run with: 

  $ mlton fact.sml 

http://en.wikipedia.org/wiki/Standard_ML#Arbitrary-precision_factorial_function_.28libraries.29
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  $ ./fact 

  66895029134491270575881180540903725867527463331380298102956713523016335 

  57244962989366874165271984981308157637893214090552534408589408121859898 

  481114389650005964960521256960000000000000000000000000000 

§Numerical derivative (higher-order functions)[edit] 

Since SML is a functional programming language, it is easy to create and pass around functions in SML programs. 

This capability has an enormous number of applications. Calculating the numerical derivative of a function is one 

such application. The following SML function "d" computes the numerical derivative of a given function "f" at a given 

point "x": 

 - fun d delta f x = 

       (f (x + delta) - f (x - delta)) / (2.0 * delta); 

   val d = fn  : real -> (real -> real) -> real -> real 

This function requires a small value "delta". A good choice for delta when using this algorithm is the cube root of 

the machine epsilon.[citation needed] 

The type of the function "d" indicates that it maps a "float" onto another function with the type "(real -> real) -> real -> 

real". This allows us to partially apply arguments. This functional style is known as currying. In this case, it is useful to 

partially apply the first argument "delta" to "d", to obtain a more specialised function: 

 - val d = d 1E~8; 

   val d = fn  : (real -> real) -> real -> real 

Note that the inferred type indicates that the replacement "d" is expecting a function with the type "real -> real" as its 

first argument. We can compute a numerical approximation to the derivative 

of  at  with: 

 - d (fn x => x * x * x - x - 1.0) 3.0; 

   val it = 25.9999996644  : real 

The correct answer is ; . 

The function "d" is called a "higher-order function" because it accepts another function ("f") as an argument. 

Curried and higher-order functions can be used to eliminate redundant code. For example, a library may require 

functions of type a -> b , but it is more convenient to write functions of type a * c -> b  where there is a fixed 

relationship between the objects of type a  and c . A higher order function of type (a * c -> b) -> (a -> b) can factor out 

this commonality. This is an example of the adapter pattern. 

§Discrete wavelet transform (pattern matching)[edit] 

http://en.wikipedia.org/wiki/Standard_ML#Numerical_derivative_.28higher-order_functions.29
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The 1D Haar wavelet transform of an integer-power-of-two-length list of numbers can be implemented very succinctly 

in SML and is an excellent example of the use of pattern matching over lists, taking pairs of elements ("h1" and "h2") 

off the front and storing their sums and differences on the lists "s" and "d", respectively: 

- fun haar l = let 

      fun aux [s] [] d = s  :: d 

        | aux [] s d = aux s [] d 

         | aux (h1::h2::t) s d = aux t (h1+h2  :: s) (h1-h2  :: d) 

        | aux _ _ _ = raise Empty 

      in   

         aux l [] [] 

      end; 

   val haar = fn  : int list -> int list 

For example: 

 - haar [1, 2, 3, 4, ~4, ~3, ~2, ~1]; 

   val it = [0,20,4,4,~1,~1,~1,~1]  : int list 

Pattern matching is a useful construct that allows complicated transformations to be represented clearly and 

succinctly. Moreover, SML compilers turn pattern matches into efficient code, resulting in programs that are not only 

shorter but also faster. 
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