Digital Image Processing

Morphological Image Processing

Presented By: Diwakar Yagyasen Sr. Lecturer CS&E, BBDNITM, Lucknow

Preview

Morphology

About the form and structure of animals and plants

Mathematical morphology

- Using set theory
- Extract image component
- Representation and description of region shape

Preview (cont.)

Sets in mathematical morphology represent objects in an image

Example

- Binary image: the elements of a set is the coordinate (x,y) of the pixels, in Z²
- Gray-level image: the element of a set is the triple, (x, y, gray-value), in Z³

Outline

Binary

images

- Preliminaries set theory
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
 - Some basic morphological algorithms
 - Extensions to gray-scale images

Preliminaries – set theory

A be a set in Z².

- $a = (a_1, a_2)$ is an element of A. $a \in A$
- a is not an element of A $a \notin A$
- Null (empty) set: \varnothing

Set theory (cont.)

- Explicit expression of a set
- 1 $A = \{a_1, a_2, \dots, a_n\}$ 2 $A = \{element \mid \text{condition for set elements}\}$
 - Example:

$$C = \left\{ w \middle| w = -d, \text{ for } d \in D \right\}$$

Set operations

• A is a subset of B: every element of A is an element of another set B $A \subseteq B$

- Union $C = A \cup B$
- Intersection $C = A \cap B$
- Mutually exclusive $A \cap B = \emptyset$

Graphical examples

Graphical examples (cont.)

$$A^c = \left\{ w \middle| w \notin A \right\}$$

$$A-B = \left\{ w \middle| w \in A, w \notin B \right\}$$

Logic operations on binary images

Functionally complete operations AND, OR, NOT

р	q	p AND q (also $p \cdot q$)	p OR q (also $p + q$)	NOT (p) (also \bar{p})
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

BBDNITM

Application of dilation: bridging gaps in images

Effects: increase size, fill gap

1 1 1 0 1 0 Structuring

element

0

0

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000. Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Diwakar Yagyasen, Deptt of CSE, max. Bernot 2 pixels

Erosion (cont.)

Application of erosion: eliminate irrelevant detail

Squares of size 1,3,5,7,9,15 pels

Erode with 13x13 square

Dilation and erosion are duals

$$(A \ominus B)^{c} = \left\{ z | (B)_{z} \subseteq A \right\}^{c}$$
$$= \left\{ z | (B)_{z} \cap A^{c} = \emptyset \right\}^{c}$$
$$= \left\{ z | (B)_{z} \cap A^{c} \neq \emptyset \right\}$$
$$= A^{c} \oplus \hat{B}$$

Diwakar Yagyasen, Deptt of CSE, BBDNITM

 $A \oplus B =$

Application: Boundary extraction

Extract boundary of a set A:

- First erode A (make A smaller)
- A erode(A)

Application: boundary extraction

original image

Using 5x5 structuring element

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Opening

- Dilation: expands image w.r.t structuring elements
- Erosion: shrink image
 - erosion+dilation = original image ?
 - Opening = erosion + dilation

 $A \circ B = (A \ominus B) \oplus B$

Opening (cont.)

Smooth the contour of an image, breaks narrow isthmuses, eliminates thin protrusions

Closing

Dilation+erosion = erosion + dilation ?

Closing = dilation + erosion

$A \bullet B = (A \oplus B) \ominus B$

A

Closing (cont.)

Smooth the object contour, fuse narrow breaks and long thin gulfs, eliminate small holes, and fill in gaps

Properties of opening and closing

Opening

- (i) $A \circ B$ is a subset (subimage) of A
- (ii) If C is a subset of D, then $C \circ B$ is a subset of $D \circ B$
- (iii) $(A \circ B) \circ B = A \circ B$

Closing

(i) A is a subset (subimage) of A • B
(ii) If C is a subset of D, then C • B is a subset of D • B
(iii) (A • B) • B = A • B

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Hit-or-miss transformation

Find the location of certain shape

Hit-or-miss transformation

Hit-or-miss transformation

Eliminate un-necessary parts

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Basic morphological algorithms

- Extract image components that are useful in the representation and description of shape
- Boundary extraction
- Region filling
- Extract of connected components
- Convex hull
- Thinning
- Thickening
- Skeleton
- Pruning

Region filling

How?

 Idea: place a point inside the region, then dilate that point iteratively

$$X_{0} = p$$

$$X_{k} = (X_{k-1} \oplus B) \cap A^{c}, k = 1, 2, 3, ...$$

Until $X_{k} = X_{k-1}$
Bound the growth

Yagyasen, Deptt of CSE, BBDNITM

Region filling (cont.)

Application: region filling

Extraction of connected components

 Idea: start from a point in the connected component, and dilate it iteratively

$$X_{0} = p$$

$$X_{k} = (X_{k-1} \oplus B) \cap A, \ k = 1, 2, 3, \dots$$

Until $X_{k} = X_{k-1}$

Extraction of connected components (cont.)

original			
thresholdin	9		
		Connected component	No. of pixels in connected comp
		01	11
		02	9
		03	9
		04	39
erosion		05	133
		06	1
+		07	1
		08	743
		09	7
		10	11
		11	11
		12	9
		13	9
		14	674
		15	85 42

How to define a Skeletons? Maximum disk 1. The largest disk Centered at a pixel

2. Touch the boundary of A at two or more places

Recall: Balls of erosion!

Skeleton

Idea: erosion

	Erosions	Openings	Set differences
	A	$A \circ B$	$A-(A\circ B)$
	$A \ominus B$	$(A \ominus B) \circ B$	$(A \ominus B) - ((A \ominus B) \circ B)$
	$A \ominus 2B$	$(A\ominus 2B)\circ B$	$(A\ominus 2B)-((A\ominus 2B)\circ B)$
	$A \ominus 3B$	$(A \ominus 3B) \circ B$	$(A\ominus 3B)-((A\ominus 3B)\circ B)$
	:	:	
Erosion k 次 百到空隼合	$A \ominus kB$	$(A \ominus kB) \circ B$ Diwakar Yagyasen, I	$(A \ominus kB) - ((A \ominus kB) \circ B)$ Deptt of CSE.
		BBDNITI	ч, , , , , , , , , , , , , , , , , , ,

.

.

. .

.

۲

.

 $A \ominus B$

Problem

The scanned image is not adjusted well

How to detection the direction of lines?How to rotate?