Digital Image Processing

Morphological Image Processing

Presented By:
Diwakar Yagyasen Sr. Lecturer CS\&E, BBDNITM, Lucknow

Preview

- Morphology
- About the form and structure of animals and plants
- Mathematical morphology
- Using set theory
- Extract image component
- Representation and description of region shape

Preview (cont.)

- Sets in mathematical morphology represent objects in an image
- Example
- Binary image: the elements of a set is the coordinate (x, y) of the pixels, in $\mathbf{Z}^{\mathbf{2}}$
- Gray-level image: the element of a set is the triple, (x, y, gray-value), in $\mathbf{Z}^{\mathbf{3}}$

Outline

- Preliminaries - set theory
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Preliminaries - set theory

- A be a set in \mathbf{Z}^{2}.
- $a=\left(a_{1}, a_{2}\right)$ is an element of A. $a \in A$
- a is not an element of $\mathrm{A} \quad a \notin A$
- Null (empty) set: \varnothing

Diwakar Yagyasen, Deptt of CSE,

Set theory (cont.)

- Explicit expression of a set
(1) $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

2. $A=\{$ element \mid condition for set elements $\}$

- Example:

$$
C=\{w \mid w=-d, \text { for } d \in D\}
$$

Set operations

- A is a subset of B : every element of A is an element of another set $\mathrm{B} \quad A \subseteq B$
- Union

$$
C=A \cup B
$$

- Intersection

$$
C=A \cap B
$$

- Mutually exclusive $A \cap B=\varnothing$

Diwakar Yagyasen, Deptt of CSE,

Graphical examples

Diwakar Yagyasen, Deptt of CSE, BBDNITM

Graphical examples (cont.)

$$
A^{c}=\{w \mid w \notin A\} \quad A-B=\{w \mid w \in A, w \notin B\}
$$

Diwakar Yagyasen, Deptt of CSE,

Logic operations on binary images

- Functionally complete operations
- AND, OR, NOT

\boldsymbol{p}	\boldsymbol{q}	\boldsymbol{p} AND $q($ also $p \cdot q)$	\boldsymbol{p} OR $q($ also $p+q)$	NOT $(\boldsymbol{p})($ also $\bar{p})$
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Diwakar Yagyasen, Deptt of CSE,

$A \cap B$
$A \cup B$
(A) $\mathrm{XOR}_{(B)}$

Special set operations for morphology

translation

$(A)_{z}=\{c \mid c=a+z$, for $a \in A\}$
$\hat{B}=\{w \mid w=-b$, for $b \in B\}$
reflection

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Dilation

B:structuring element

$$
A \oplus B=\left\{z(\hat{B})_{z} \cap A \neq \varnothing\right\}
$$

Dilation: another formulation

Application of dilation: bridging gaps in images

Effects: increase size, fill gap

Historicaliy, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using " 00 " as 1900 rather than the year 2000.

Erosion

$$
A \ominus B=\left\{z \mid(B)_{z} \subseteq A\right\}
$$

z: displacement

Diwakar Yagyasen, Deptt of CSE, BBDNITM

Erosion (cont.)

Diwakar Yagyasen, Deptt of CSE,

Application of erosion: eliminate irrelevant detail

Squares of size 1,3,5,7,9,15 pels

Erode with
13×13 square

original image

Dilation and erosion are duals

$$
\begin{aligned}
(A \ominus B)^{c} & =\left\{z \mid(B)_{z} \subseteq A\right\}^{c} \\
& =\left\{z \mid(B)_{z} \cap A^{c}=\varnothing\right\}^{c} \\
& =\left\{z \mid(B)_{z} \cap A^{c} \neq \varnothing\right\} \\
& =A^{c} \oplus \hat{B}
\end{aligned}
$$

Diwakar Yagyasen, Deptt of CSE, BBDNITM

Application: Boundary extraction

- Extract boundary of a set A:
- First erode A (make A smaller)
- A - erode(A)

$$
A \ominus B
$$

Application: boundary
 extraction

original image

Diwakar Yagyasen, Deptt of CSE,

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Opening

- Dilation: expands image w.r.t structuring elements
- Erosion: shrink image
- erosion+dilation = original image ?
- Opening= erosion + dilation
$A \circ B=(A \ominus B) \oplus B$

Diwakar Yagyasen, Deptt of CSE,

Opening (cont.)

Diwakar Yagyasen, Deptt of CSE BBDNITM

$$
A \circ B=(A \ominus B) \oplus B^{25}
$$

Opening (cont.)

Find contour
Fill in contour
Smooth the contour of an image, breaks narrow isthmuses, eliminates thin protrusions

Closing

- Dilation+erosion = erosion + dilation ?
- Closing = dilation + erosion

$$
A \bullet B=(A \oplus B) \ominus B
$$

Closing (cont.)

Find contour
Fill in contour

Smooth the object contour, fuse narrow breaks and long thin gulfs, eliminate small holes, and fill in gaps

Properties of opening and closing

- Opening
(i) $A \circ B$ is a subset (subimage) of A
(ii) If C is a subset of D , then $C \circ B$ is a subset of $D \circ B$
(iii) $(A \circ B) \circ B=A \circ B$
- Closing
(i) A is a subset (subimage) of $A \bullet B$
(ii) If C is a subset of D , then $C \bullet B$ is a subset of $D \bullet B$
(iii) $(A \bullet B) \bullet B=A \bullet B$

Diwakar Yagyasen, Deptt of CSE, BBDNITM

Noisy image

Remove outer noise

Remove inner noise

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Hit-or-miss transformation

- Find the location of certain shape

Find the set of pixels that contain shape X

Diwakar Yagyasen, Deptt of CSE, BBDNITM

Hit-or-miss transformation

Detect object via background

Hit-or-miss transformation

- Eliminate un-necessary parts

Outline

- Preliminaries
- Dilation and erosion
- Opening and closing
- Hit-or-miss transformation
- Some basic morphological algorithms
- Extensions to gray-scale images

Basic morphological algorithms

- Extract image components that are useful in the representation and description of shape
- Boundary extraction
- Region filling
- Extract of connected components
- Convex hull
- Thinning
- Thickening
- Skeleton
- Pruning

Region filling

- How?
- Idea: place a point inside the region, then dilate that point iteratively

$$
\begin{aligned}
& X_{0}=p \\
& X_{k}=\left(X_{k-1} \oplus B\right) \cap A^{c}, k=1,2,3, \ldots \\
& \text { Until } X_{k}=X_{k-1} \\
& \quad \text { Bound the growth }
\end{aligned}
$$

Yagyasen, Deptt of CSE, BBDNITM

Region filling (cont.)

X_{0}
X_{1}

Diwakar Yagyasen, Deptt of CSE, StOP

Application: region filling

The first filled region

Extraction of connected components

- Idea: start from a point in the connected component, and dilate it iteratively

$$
\begin{aligned}
& X_{0}=p \\
& X_{k}=\left(X_{k-1} \oplus B\right) \cap A, k=1,2,3, \ldots
\end{aligned}
$$

Extraction of connected components (cont.)

Diwakar Yagyasen, Deptt of CSE

BBDNITM

Skeletons

How to define a Skeletons?
Maximum disk

1. The largest disk Centered at a pixel 2. Touch the boundary of A at two or more places

Recall: Balls of erosion!
Diwakar Yagyasen, Deptt of CSE, BBDNITM

Skeleton

- Idea: erosion

Erosions Openings
 Set differences

A	$A \circ B$	$A-(A \circ B)$
$A \ominus B$	$(A \ominus B) \circ B$	$(A \ominus B)-((A \ominus B) \circ B)$
$A \ominus 2 B$	$(A \ominus 2 B) \circ B$	$(A \ominus 2 B)-((A \ominus 2 B) \circ B)$
$A \ominus 3 B$	$(A \ominus 3 B) \circ B$	$(A \ominus 3 B)-((A \ominus 3 B) \circ B)$

Erosion k 次 $A \ominus k B \quad(A \ominus k B) \circ B \quad(A \ominus k B)-((A \ominus k B) \circ B)$

$A \ominus B$

$A \ominus 2 B$

$(A \ominus B) \circ B$

$(A \ominus 2 B)_{\circ}$ Diwakar Yagyasen, Deptt of CSE
BBDNTif $\left.{ }^{(}\right)-((A \ominus 2 B) \circ B)$

FIGURE 10.29 The final skeleton.

Problem

- The scanned image is not adjusted well

-	-	-	-				
-	-	-	-				
-	-	-	-				
\bullet	-	-	-	-		-	-
-	-	-	-	-		-	-
-	-	-	-	-		-	-
-	-	-	-	-		-	-

- How to detection the direction of lines?
- How to rotate?

Diwakar Yagyasen, Deptt of CSE,

