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Chapter 8Randomized AlgorithmsIn this chapter we explore randomized algorithms for computational geometry. We begin with thetechnique of randomized incremental construction.8.1 Randomized Incremental ConstructionIn this section we describe the randomized incremental construction technique. The main ideabehind this approach to geometric algorithm design is to build some structure by incrementallyinserting the input objects one at a time in random order. This gives rise to very simple algorithms,and, as we will show, it gives rise to algorithms with very good expected behavior as well. Butbefore we describe this technique in detail, let us review a few important mathematical facts.8.1.1 Some Preliminary FactsFirst, lets say a couple of words about expectation.ExpectationLet X be a discrete random variable that takes on values x1; x2; : : : ; xn with probabilities p1; : : : ; pn,respectively. The expectation E(X) is simply the weighted sumE(X) = X1�i�nxipi:An important property of this de�nition is that it implies that the expectation of a sum of randomvariables is the sum of the expectations. In particular, suppose we have a second random variableY that takes on values y1; y2; : : : ; ym with probabilities q1; : : : ; qn, respectively. Then X + Y is arandom variable that takes on the values xi + yj for all 1 � i � n and 1 � j � m (we are notassuming that X and Y are necessarily independent). Let pi;j be the probability that X + Y takesthe value xi + yj .From the de�nition, then,E(X + Y ) = Xi Xj (xi + yj) pi;j= Xi Xj xipi;j +Xi Xj yjpi;j= Xi xiXj pi;j +Xj yjXi pi;j27



28 Chapter 8. Randomized Algorithms= Xi xipi +Xj yjqj= E(X) +E(Y ):This generalizes to show that for random variables X1; X2; : : : ; Xn, the expectationE Xk Xk! =Xk E(Xk);and this is true even if the Xk are not mutually independent.Harmonic NumbersThe harmonic numbers, de�ned by Hn = P1�i�n 1=i appear frequently in probabalistic analysis.In Knuth, vol. I, page 74, you can �nd the asymptotic expressionHn = lnn+ 
 + 12n � 112n2 + 1120n4 � �; 0 < � < 1252n6 :Here is a quick wordless proof that b(n)=2 < Hn � b(n), where b(n) is the number of bits neededto write n in binary.Hn = 1 +1=2 +1=3 +1=4 +1=5 +1=6 +1=7 +1=8 +1=9 + � � �< 1 +1=2 +1=2 +1=4 +1=4 +1=4 +1=4 +1=8 +1=8 + � � �< 1 +1 +1 +1 + � � �= b(n)Hn = 1 +1=2 +1=3 +1=4 +1=5 +1=6 +1=7 +1=8 +1=9 + � � �> 1 +1=2 +1=4 +1=4 +1=8 +1=8 +1=8 +1=8 +1=16 + � � �> 1 +1=2 +1=2 +1=2 + � � �= b(n)=2Cherno� BoundsIt is often necessary in the analysis randomized algorithms to bound the sum of a set of randomvariables. One set of inequalities that makes this tractable is the set of Cherno� Bounds.Let X1; X2; : : : ; Xn be a set of mutually independent indicator random variables, such that eachXi is 1 with some probability pi > 0 and 0 otherwise. Let X =Pni=1Xi be the sum of these randomvariables, and let � denote the mean of X , i.e., � = E(X) =Pni=1 pi.Theorem 8.1.1: Let X be as above. Then, for � > 0,Pr(X > (1 + �)�) < � e�(1 + �)(1+�) �� ; (8.1)and, for 0 < � � 1, Pr(X < (1� �)�) < e���2=2: (8.2)Proof: See the book Randomized Algorithms by Motwani and Raghavan. 28.1.2 3-Dimensional Convex Hull ConstructionThe �rst application of the RIC technique we give is for a simple randomized algorithm for con-structing the convex hull of n points in 3-space. The method we describe runs in O(n logn) expectedtime and uses O(n) expected space. The construction is incremental, because it adds points one at



8.1. Randomized Incremental Construction 29a time and updates the hull immediately, and randomized, because it chooses which point to addrandomly. More importantly, the expected time and space bounds we will derive for this algorithmare taken over the random choices made by the algorithm, and is not dependent of the distributionof the input points.Assume, to make the description easier, that our set of points in space P = fp1; p2; : : : ; png is ingeneral position (no four points are coplanar). Then the faces of convex hulls of subsets of P aretriangles. The algorithm maintains a tetrahedralization of the convex hull of fp1; p2; : : : ; pkg, as kgoes from 4 to n.Procedure RIChullLet fp1; p2; : : : ; png be a random permutation of the n input points.Form the tetrahedron T4 de�ned by fp1; p2; p3; p4gChoose a center point c 2 T4for k = 5 to n doWalk through the tetrahedra of Tk�1 from c to pkIf pk is inside a tetrahedron of Tk�1, thenpk is inside the convex hull and Tk = Tk�1else Determine the faces of Tk�1 that pk sees,starting with the last face encountered by the ray *cpk.Tk is the tetr'ization formed by erecting tetrahedrafrom each visible face to pk and adding them to Tk�1.Space: To analyze the expected space required by this algorithm we can count the number oftetrahedra formed in going from step k � 1 to step k. We let jTkj denote the total number oftetrahedra in tetr'ization Tk and let sk be the number of faces on its outer surface, which is theconvex hull of fp1; p2; : : : ; pkg. (jT4j = s4 = 4.)If the point pk is not on the convex hull, then no tetrahedra are formed: jTkj = jTk�1j. If pk is onthe convex hull, then one tetrahedron is added for each surface face that is destroyed. The numberof new surface faces created is the degree d(pk) of the vertex pk on the convex hull. Therefore, thenumber of tetrahedra created equalsjTkj � jTk�1j = d(pk) + sk�1 � sk:Summing the right and left hand sides of this equation over 5 � k � n givesjTnj � jT4j = s4 � sn + X5�k�n d(pk):We bound the expected number of tetrahedra E (jTnj) by the expected sum of degrees,E� X5�k�n d(pk)� = X5�k�nE (d(pk)) < X5�k�n 6 < 6n:To bound the expectation of the kth degree d(pk), we think of running the algorithm backwards|starting from a convex hull and removing vertices until only the �rst four remain. The sum ofdegrees of all vertices on a given hull is twice the number of hull edges. Thus, the average degreeis at most 6� 12=n; if we remove a vertex at random, we can expect to remove less than 6 surfacefaces. Thus, the expected space is bounded above by 6n.Time: The time spent constructing faces is constant per face, so we know that data structuremanipulation is expected to be linear by the previous analysis. (You should convince yourself thatyou can store the tetr'ization in a data structure that lets you spend constant time per face.) Thecrucial quantity for the running time is how many faces are intersected by each segment cpk|wespend time proportional to this amount in walking from c to pk.



30 Chapter 8. Randomized AlgorithmsLet us say that four points (p; q; r; s) are a con
ict if the segment cs intersects4pqr. We say thata con
ict arises if the face 4pqr is constructed by the algorithm sometime before s is added. (Thisde�nition is a bit redundant|once s is added the algorithm cannot construct 4pqr as a face|butthat doesn't matter.)We would like to count the expected number of con
icts that arise during an execution of thealgorithm on n points. Let Z� be a random variable that is 1 if the speci�c con
ict � = (p; q; r; s)arises in the �rst n steps. The quantity that we want to know isX8 con
icts �Z�:The probability that a con
ict � arises at step k is the probability that � exists at step k anddid not at step k � 1. Thus, if we let X�;i be a random variable that is 1 if and only if con
ict� = (p; q; r; s) exists at step i, that is, triangle 4pqr is on the surface of the convex hull and s isoutside the hull and projects onto 4pqr. In symbols,Z� = X1�i�nX�;i \X�;i�1:We can now evaluate the expectation. First, write the intersection in terms of conditionalprobability. X8 con
icts �Z� = X� X1�i�nX�;i \X�;i�1= X� Xi Pr(X�;i) � Pr(X�;i�1 �� X�;i)The conditional term is the probability that one of the three vertices of the triangle of � was chosenlast of i vertices. Thus, we can bound the previous expression byX� Xi Pr(X�;i) � 3i :Next we change the order of summation, which allows us to re-write this asXi 3i X� Pr(X�;i):The inner sum is a fancy way to count the points outside of the convex hull of the �rst i points. Itis surely less than n. X8 con
icts �Z� �Xi 3i n = 3nHn = O(n logn):This shows that the expected time is O(n logn). At the present time, bounds on the varianceare unknown. There are some tail estimate bounds on the space of the form \The probability thatthe space exceeds c times the expectation is at most (c=e)�c=e."8.1.3 Segment IntersectionWe can develop an RIC algorithm and data structure for segment intersection as well. Suppose weare given n segments that have K intersections. We begin with an empty trapezoidation. At stagek + 1, we insert segment sk+1 into the trapezoidation of s1; s2; : : : ; sk|this means that we must�gure out which trapezoids sk+1 intersects (location) and cut them into smaller trapezoids. As wewill describe in a moment, we use the history of the trapezoidation to locate sk+1. Our �nal spaceand running time will be O(n logn+K), expected.The data structures that we need are:



8.1. Randomized Incremental Construction 31� a trapezoidation of the k current segments. Decompose the complement of s1; s2; : : : ; sk intotrapezoids by making vertical cuts from each endpoint and intersection point. Each trapezoidis de�ned by at most four segments and can have pointers to the at most four trapezoids thatshare vertical cuts.� A history DAG (directed acyclic graph). When we cut a trapezoid � into several new \child"trapezoids by introducing a new segment we push into history and give it pointers down to its\children." This is our location structure.To insert a segment s = sk+1, we begin by giving it to the single trapezoid at the top of thehistory DAG. This trapezoid has a constant number of children, so it breaks s into the appropriatenumber of pieces and passes s down to each child that s intersects. Thus, s is passed down untilit reaches the current trapezoidation|intersections can be reported as s is passed down or in aseparate phase. There s updates all trapezoids it intersects (pushing modi�ed trapezoids up intothe history DAG). The trapezoids' neighbor pointers are used to merge neighboring trapezoids.De�ne a con
ict � to be a pair consisting of a trapezoid � , which is de�ned by at most foursegments, and a segment s that intersects � . Again, let Z� be an indicator random variable forcon
ict �. The cost of the algorithm is exactly P8�Z�, because we have to pass s through everytrapezoid that it is in con
ict with.As before, if we let X�;i be a random variable that is 1 if and only if con
ict � exists at step ithen X8 con
icts �Z� = X� Xi Pr(X�;i) � Pr(X�;i�1 �� X�;i)= X� Xi Pr(X�;i) � 4i= Xi 4i X� Pr(X�;i)The inner sum is the number of con
icts between segments si+1, : : : , sn and the trapezoids at stagei for a random permutation. This will be O(n(2 + Ki+1=(i + 1))), where Ki+1 is the number ofintersections in a random permutation of the �rst i+ 1 segments, which is K(i(i+ 1))=(n(n � 1)).Thus, X8 con
icts �Z� � O(Xi ni + K(n� 1)) = O(n logn+K):8.1.4 Linear Programming and Generalized LPWe discussed earlier the 2-dimensional linear programming problem. In a general form, the linearprogramming problem is to �nd a vector x 2 Rd minimizing ~c � x subject to the linear equationsAx � b. We can express this in geometric terms. Let Hi be the hyperplane in Rd that is given bythe ith row of A and bi. Then we �nd a point p in the intersection of n d-dimensional halfplanesH1; H2; : : : ; Hn that maximizes p � ~c for a d-dimensional cost vector ~c.Let's assume we are only interested in a solution in some bounding box B: xi 2 [min ;max ], foreach coordinate index 1 � i � d. Then we can solve a d-dimensional linear programming problemby �nding the optimum vertices of the polytopesPi = B \ \1�j�iHjby adding one hyperplane at a time.1. Put the hyperplanes H1; H2; : : : ; Hn in a random order.



32 Chapter 8. Randomized Algorithms2. Let v0 be optimum vertex of the bounding box with respect to ~c. There are a constant numberof vertices (2d), so this takes constant time.3. For i := 1 to n do 4{6:4. If hyperplane Hi contains vi�1 then the optimum vertex vi = vi�1.5. Otherwise, Hi cuts vi�1 o� the polytope Pi�1 in forming Pi. The new optimum vertex vi, ifit exists, is contained in the hyperplane h that bounds Hi because the cost increases along thesegment from vi to vi�1. To �nd it:(a) Project the cost vector ~c onto h to obtain ~c0.(b) Recursively solve the d � 1 dimensional linear program of maximizing ~c0 in h subject toB;H1; : : : ; Hi�1.(c) The recursion bottoms out in one dimension, where we can easily �nd the maximumsatisfying the constraints or determine that no maximum exists.Linear Programming Theorem. A linear programming problem with n constraints in d dimen-sions is solved in O(d!n) expected time.Proof: We can prove this by induction on d. It should be clear that the theorem is true fordimension d = 1.Assume the theorem is true for dimension d � 1; we can solve the recursive call in step 6 ink(d � 1)!(i� 1) time for some constant k. How often do we need to do this? That is, how often isvi di�erent from vi�1? Well, vi is de�ned by d hyperplanes and it can only be di�erent from vi�1 ifone of these hyperplanes' constraints is chosen as Hi. This happens with probability d=i, since allorderings are equally likely. Since the expected cost of adding constraint Hi isk(d� 1)!(i� 1) � di < kd!the total expected cost of the algorithm is kd!n. 28.1.5 Generalized Linear ProgrammingWe can generalize the above algorithm to solve some problems in convex programming|where thecontraints are convex functions, not just linear functions. As an example, let's look at a deviousalgorithm by Emo Welzl for computing the smallest circle enclosing a set of n points. We �rstshow that the call Circle(S; ;) correctly returns this circle and then prove that it does so in O(jSj)expected time.Procedure Circle(S; P ) returns a circle that passes throughthe points of P and contains S, if one exists:If jSj = 0 or jP j = 3 thenReturn the smallest circle through P in O(1) time.ElsePick a random point p from S.c = Circle(S � fpg; P ) :If p 2 c thenReturn cElseReturn Circle(S � fpg; P [ fpg).



8.2. Random Sampling 33If we assume general position, as usual, then the circle enclosing S is de�ned by either two orthree points of S. (Two points, if they de�ne the diameter of the circle.) Because we start with Pempty, Circle(S; P ) can be called with zero, one, two or three points in P .We prove, by induction on jSj, the statement \If Circle(S; P ) is called with P being a subsetof the points de�ning the smallest enclosing circle of S [ P , then Circle(S; P ) correctly computesthe smallest enclosing circle of S [ P ." For the base case, we can prove it by hand for all sets withjSj � 3 and jP j � 3.Now, we assume that the result is true for sets S0 of size n�1 and prove it for sets S of size n. First,if jP j = 3, then P contains all the points de�ning the minimum enclosing circle of S andCircle(S; P )correctly returns that circle. If jP j < 3, then the �rst recursive call c = Circle(S � fpg; P ) returnsthe correct circle enclosing (S � fpg) [ P by the induction hypothesis. If p 2 c, then c containsS [ P and is correctly returned. Otherwise, p must be one of the points that de�nes the minimumenclosing circle. Therefore the second call Circle(S � fpg; P [ fpg) returns the correct circle.To analyze expected running time, we write recurrences that depend on the number of pointsin S and P . Let Ti(n) denote the upper bound on the expected running time of Circle(S; P ) withjSj = n and jP j = 3� i. We want to bound the expected running time T3(n) by O(n).With this notation, i is the number of points that still must be speci�ed on the smallest enclosingcircle. A call Circle(S; P ) will generate the second recursive call Circle(S � fpg; P [ fpg) if andonly if p happens one of the i points that de�ne the smallest enclosing circle. The probability of thisis at most i=jSj. For some constants c and c0, the expected running times satisfyT1(n) � T1(n� 1) + c0 + 1nT0(n� 1)T2(n) � T2(n� 1) + c0 + 2nT1(n� 1)T3(n) � T3(n� 1) + c0 + 3nT2(n� 1)Which have solutions: T1(n) � c0n+ c lnn � (c+ c0)nT2(n) � (2c+ 3c0)nT3(n) � (6c+ 10c0)nBy the way, this algorithm can be extended to higher dimensions and to �nding smallest ellipsoids.Suppose d points are needed to de�ne the basic object (sphere, ellipsoid, : : : ). Further, suppose theobject de�ned by d points can be computed in c operations and a point-in-object test takes c0operations. (Both c and c0 may hide factors of d.) Then we can show that Td � (c + c0)d!n asfollows: Td(n) � Td(n� 1) + c0 + dnTd�1(n� 1)� (c+ c0d)d!(n � 1) + c0 + dn (c+ c0(d� 1))(d� 1)!(n� 1)� (c+ c0d)d!n � (c+ c0d)d! + c0 + (c+ c0d)d!� (c+ c0)d!� (c+ c0d)d!n:8.2 Random SamplingAnother powerful technique in randomized geometric algorithm design is random sampling. Thegeneral scenerio is that one is given a collection S of geometric objects and asked to construct somegeometric structure for S. The technique involves selecting a random sample Y of S of size r, forsome parameter r, and then using Y to decompose S into subproblems to be solved recursively. Thesubproblem solutions are then merged in some way to de�ne the �nal step in this divide-and-conqueralgorithm.



34 Chapter 8. Randomized Algorithms8.2.1 Polygon Triangulation RevisitedWe illustrate this approach using the speci�c problem of polygon triangulation. Recall that in thisproblem one is given an n-node polygon P , and one wishes to add diagonals to P so that eachinternal face is a triangle. As we have shown earlier, it is enough for us to produce a trapezoidaldecomposition of P , where we add a vertical line interior to P up and/or down from each vertexof P until it hits an edge of P . We already have described a simple O(n logn)-time method forproducing a trapezoidal decomposition of a set of n segments, which need not be connected. As weshow below, we can easily turn this algorithm into a simple randomized method for triangulating asimple polygon in O(n log logn) expected time.We begin by selecting a random sample, Y , of r = n= logn edges of P . We apply the simple plane-sweeping algorithm to produce a trapezoidal decomposition, T (Y ), of Y in time O(r log r) = O(n)time. We then determine, for each trapezoid � in T (Y ), the set, C� of edges of P that intersect theinterior of � . We refer to this set as the con
ict set for � . We can determine C� by \walking" alongthe edges of P noting for each edge s of P the trapezoids we cross as we traverse s (we deposit thename of s in the con
ict set for each such trapezoid). Since each edge of s begins where another ends,we can perform this entire walk around P in O(n+P�2T (Y ) n� ) time, where n� denotes the numberof edges in C� . We complete the algorithm, then, by applying the simple plane-sweep trapezoidaldecomposition algorithm to each C� .Analysis. To analyze this algorithm we concentrate on two important numbers:max�2T (Y )n� ; and (8.3)X�2T (Y )n� : (8.4)We begin with a bound for (8.3), which holds with n-polynomial probability:Lemma 8.2.1: max�2T (Y ) n� � c(n=r) log r with probability at least 1� 1=n.Proof: Each trapezoid � in T (Y ) exists because of two facts:1. Each of the edges de�ning � 's boundary are in Y . There are at least two and at most foursuch edges.2. Each of the edges of C� are not in Y .Moreover, we can abstractly de�ne the complete set of (O(n4)) potential trapezoids in terms of thesetwo sets of edges, the �rst of which we call � 's triggers and the second of which we call � 's killers(indeed, this notion motivates our calling C� the \con
ict set" for �). This allows us to analyze theprobability that some potential trapezoid � is included in T (Y ):Pr(� 2 T (Y )) � � rn�2 �1� rn�n� :Using the fact that (1� x=m)m � ex, we can bound this probability by� rn�2 e�t� ;where t� = n�=(n=r), a quantity we call the excess for � . Thus, the probability that a trapezoid� with excess more than 2 ln r is included in T (Y ) is at most 1=n2. Since there are O(r) = O(n)trapezoids total in T (Y ), the probability that the (combinatorially) largest trapezoid has excessmore than 2 ln r is at most 1=n. 2Having established a bound on (8.3) that holds with n-polynomial probability, we next give anexpected bound on (8.4).



8.2. Random Sampling 35Lemma 8.2.2: E(P�2T (Y ) n� ) � cn, for some constant c > 1.Proof: We establish this lemma by showing that the expected number of trapezoids traversed by arandom edge e of P is O(1). We, in turn, establish this by the now-familiar \backward analysis."Let Y 0 denote the random sample Y [feg, which has size r+1. Note that the number of trapezoidscrossed by e in T (Y ) is proportional to the number of trapezoids of T (Y 0) that are not in T (Y ),that is, the number of trapezoids of T (Y 0) that would be destroyed by the removal of e from Y 0.But with respect to Y 0 the edge e appears to be chosen at random from its r + 1 edges. Since anytrapezoid in T (Y 0) has at most 4 triggers, this implies that any trapezoid � in T (Y 0) has probabilityat most 4=(r + 1) of being destroyed by the removal of the random edge e from Y 0. Since there areO(r) edges total in Y 0, this implies that the expected number of edges of T (Y 0) destroyed by theremoval of e is O(1). 2Returning to the analysis of our algorithm, these two lemmas establish that the expected runningtime of our randomized polygon trapezoidal decomposition algorithm is O(n log logn). By being alittle more clever in how we use the random sampling technique we can actually improve this runningtime to have an expected value of O(n log� n), where log� n is the familiar iterated logarithm function(de�ned as the smallest k so that log(k) n < 2, where log(1) n = logn and log(k) n = log log(k�1) n).The change involves iteratively applying the random sampling technique in a kind of \globally"recursive fasion.We begin as described above, constructing the trapezoidal decomposition T (Y1) of a randomsample Y1(= Y ), whose size is r1 = n= logn. We also determine all the con
ict sets for T (Y1)by traversing the polygon P , as described above. We then de�ne a random sample Y2 of sizer2 = n= log logn of the edges of P . The sample Y2, of course, de�nes a random sample Y2 \ C� ofeach C� with expected size n� (n=r2) = n�= log logn. We then produce a trapezoidal decompositionof each set Y2 \ C� using the simple plane-sweep algorithm. The expected running time of thiscomputation is O(n� logn�= log logn), which is O(n� ) for each trapezoid � in T (Y1), by Lemma 8.2.1.By then removing edges of T (Y1) that are now determined to not be a part of T (Y2) we can producea representation of T (Y2). Given T (Y2), we can again traverse the polygon P to determine thecon
ict set for each trapezoid in T (Y2) in O(n) expected time (by Lemma 8.2.2). We may thereforerepeat this method, producing T (Yi+1) from T (Yi) in O(n) time, where each Yi is a random sampleof size n= log(i) n of the edges of P . Since each iteration takes O(n) expected time, and there areclearly at most log� n iterations, the total time for producing T (P ) is expected to be O(n log� n).8.2.2 �-Nets, �-Approximations, and �-CuttingsThe random sampling concept can actually be couched in a fairly general setting, which allows fora wide applicability to geometric problems. We explore this general formulation in this subsection.Let (X;R) be a set system, where X is an n-element gound set and R is a collection of subsetsof X . Moreover, let us assume that the sets in R, which we will call ranges, are generated by somegeometric property of the elements inX . For example, the setX could be n points in the plane andRcould be all combinatorially-distinct ways of intersecting points in X with disks. Or, alternatively, Xcould be a set of n hyperplanes inRd andR could be all combinatorially-distinct ways of intersectinghyperplanes in X with d-simplices (the d-dimensional generalization of triangles).For any subset Y � X , we let RjY denote the collection of ranges restricted to Y , i.e.,RjY = fR \ Y :R 2 Rg:The shatter function, �R(n), for (X;R) is de�ned as follows:�R(m) = maxfjRjY j:Y � X; jY j = mg:It provides, in some sense, a measure of the recursive complexity of a set system (X;R). De�nethe VC-exponent of (X;R) to be smallest paramenter d such that �R(m) is O(md) (actually, this



36 Chapter 8. Randomized Algorithmsshould be de�ned as an in�mum). This quantity is closely related to (and subsumes) the notion ofVC-dimension, which is common in the Computational Geometry literature. For the remainder ofthis section we assume that the set systems we are dealing with have bounded VC-exponent (this istrue, for example, for the set systems mentioned above).A subset Y � X is an �-net for (X;R) if, for any range R 2 R, Y \ R 6= ; any time jRj > �n.Intuitively, the subset Y \captures" all the big ranges.Theorem 8.2.3: If (X;R) has bounded VC-exponent, then there is a constant c > 0 such that ifY � X is of size at least cr log r, then Y is a (1=r)-net, with r-polynomial probability.Proof: Let Y be as above. Let us analyze the probability that Y is a (1=r)-net. Speci�cally, let Rbe some range with jRj > n=r. We can view the value of jY \ Rj as a random variable, which hasmean jRjs=n, where s is the size of jY j. Thus,Pr(Y \ R = ;) = Pr(jY \ Rj = 0)= Pr(jY \ Rj � (1� 1)jRjs=n):We may therefore apply a Cherno� bound to bound this quantity bye�jRjs=2n < e�s=2r:If we let d denote the VC-exponent of (X;R), then we know that the number of combinatorially-distinct ranges, with respect to Y , is O(sd). Thus, the probability that Y is not a (1=r)-net isbounded by c0sde�s=2r;for some constant c0 � 1. We can make this less than 1=rk, for example, by choosing s =4kdr ln r ln c0. 2A related notion to that of an �-net is that of an �-approximation, which is de�ned as a subsetY � X such that for each range R 2 R,���� jY \RjjY j � jRjjX j ���� < �:Note that an �-approximation is automatically an �-net, but an �-net need not be an �-approximation.We will not prove it here, but, using the Cherno� bounds, one can show that a random subset Y ofsize �(r2 log r) is a (1=r)-approximation with r-polynomial probability.As an application of this �-net theory, consider the following problem: one is given a set X ofn hyperplanes in Rd and asked to produce a triangulation of space (into d-simplices) so that eachsimplex intersects at most n=r hyperplanes, for a given parameter 0 < r < n. Such a triangulation iscalled an �-cutting, for � = 1=r. We can easily construct a (1=r)-cutting by �rst forming a (1=r)-netY of the set of hyperplanes (under d-simplex ranges), computing the arrangement of the hyperplanesin Y , and triangulating each face in this arrangement. By the zone lemma for hyperplanes, this willproduce O(jY jd) = O(rd logd r) d-simplices, each of which is guaranteed to intersect at most n=rhyperplanes. That is, it will construct a (1=r)-cutting.


