26



Chapter 8

Randomized Algorithms

In this chapter we explore randomized algorithms for computational geometry. We begin with the
technique of randomized incremental construction.

8.1 Randomized Incremental Construction

In this section we describe the randomized incremental construction technique. The main idea
behind this approach to geometric algorithm design is to build some structure by incrementally
inserting the input objects one at a time in random order. This gives rise to very simple algorithms,
and, as we will show, it gives rise to algorithms with very good expected behavior as well. But
before we describe this technique in detail, let us review a few important mathematical facts.

8.1.1 Some Preliminary Facts

First, lets say a couple of words about expectation.

Expectation

Let X be a discrete random variable that takes on values x4, xs, . .., x, with probabilities pi, ..., pn,
respectively. The ezpectation E(X) is simply the weighted sum

1<i<n

An important property of this definition is that it implies that the expectation of a sum of random
variables is the sum of the expectations. In particular, suppose we have a second random variable
Y that takes on values y1,¥s,...,Yyn with probabilities qi, ..., ¢,, respectively. Then X +Y is a
random variable that takes on the values z; +y; for all 1 < i < n and 1 < j < m (we are not
assuming that X and Y are necessarily independent). Let p; ; be the probability that X + Y takes
the value z; + y;.

From the definition, then,

E(X +Y)

E E (7; +y;5) pij

i g

E E Tipi; + E E Y;iDi,j

i g i g

E T; E Pij + E Yj E Pi,j
J J i

P

27



28 Chapter 8. Randomized Algorithms

= Za’vipi—l—Zyjqj
= EX)+E®Y).

This generalizes to show that for random variables X1, X5, ..., X,,, the expectation
£(yx) - seom,
k k
and this is true even if the X}, are not mutually independent.

Harmonic Numbers

The harmonic numbers, defined by H, = >",_,., 1/¢ appear frequently in probabalistic analysis.
In Knuth, vol. I, page 74, you can find the asymptotic expression

1 1 1
Hn=Inn+y+o- - 55+ oot

— €, 0<€<252n6'

Here is a quick wordless proof that b(n)/2 < H,, < b(n), where b(n) is the number of bits needed
to write n in binary.

H,=1 +1/24+1/3 +1/4 +1/5 +1/6 +1/7 +1/8 +1/9 +---
<1 +1/2 4+1/2 +1/4 +1/4 +1/4 +1/4 +1/8 +1/8 +---
<1 +1 +1 +1 +---
= b(n)

H,=1 +1/24+1/3 +1/4 +1/5 +1/6 +1/7 +1/8 +1/9 +---
>1 +1/2 +1/4 +1/4 +1/8 +1/8 +1/8 +1/8 +1/16 +---
>1 +1/2 +1/2 +1/2 4+
= b(n)/2

Chernoff Bounds

It is often necessary in the analysis randomized algorithms to bound the sum of a set of random
variables. One set of inequalities that makes this tractable is the set of Chernoff Bounds.

Let X4, X5, ..., X, be a set of mutually independent indicator random variables, such that each
X; is 1 with some probability p; > 0 and 0 otherwise. Let X = 3" | X; be the sum of these random
variables, and let u denote the mean of X, i.e., u = E(X) =Y, p;.

Theorem 8.1.1: Let X be as above. Then, for § > 0,

“w

1)

Pr(X > (1+6)p) < [(HZW

and, for 0 < § <1,
Pr(X < (1 —08)p) <e #/2, (8.2)

Proof: See the book Randomized Algorithms by Motwani and Raghavan. O

8.1.2 3-Dimensional Convex Hull Construction

The first application of the RIC technique we give is for a simple randomized algorithm for con-
structing the convex hull of n points in 3-space. The method we describe runs in O(nlogn) expected
time and uses O(n) expected space. The construction is incremental, because it adds points one at



8.1. Randomized Incremental Construction 29

a time and updates the hull immediately, and randomsized, because it chooses which point to add
randomly. More importantly, the expected time and space bounds we will derive for this algorithm
are taken over the random choices made by the algorithm, and is not dependent of the distribution
of the input points.

Assume, to make the description easier, that our set of points in space P = {p1,p2,...,pn} isin
general position (no four points are coplanar). Then the faces of convex hulls of subsets of P are
triangles. The algorithm maintains a tetrahedralization of the convex hull of {p1,p2,...,pr}, as k

goes from 4 to n.

Procedure RIChull
Let {p1,p2,...,pn} be a random permutation of the n input points.
Form the tetrahedron Ty defined by {p1,p2,ps,pa}
Choose a center point ¢ € Ty
for k=5ton do
Walk through the tetrahedra of T;_; from ¢ to py
If p;, is inside a tetrahedron of Tj_1, then
pi is inside the convex hull and T}, = Ty _1
else
Determine the faces of T}, 1 that p, sees,
starting with the last face encountered by the ray cpy.
Ty, is the tetr’ization formed by erecting tetrahedra
from each visible face to py and adding them to Tj_1.

Space: To analyze the expected space required by this algorithm we can count the number of
tetrahedra formed in going from step k — 1 to step k. We let |T%| denote the total number of
tetrahedra in tetr’ization Tp and let s; be the number of faces on its outer surface, which is the
convex hull of {p1,pa,...,pr}. (|Ta| =354 =4.)

If the point py, is not on the convex hull, then no tetrahedra are formed: |Ty| = |Tx—1]. If px is on
the convex hull, then one tetrahedron is added for each surface face that is destroyed. The number
of new surface faces created is the degree d(px) of the vertex pi on the convex hull. Therefore, the
number of tetrahedra created equals

|Tx| = |Tk—1] = d(pr) + sk—1 — k-

Summing the right and left hand sides of this equation over 5 < k < n gives

| Tn| = |T4| = 54 — sn + Z d(pr)-
5<k<n

We bound the expected number of tetrahedra E (|T,|) by the expected sum of degrees,

E( Z d(pk))z Z E (d(px)) < Z 6 < 6n.

5<k<n 5<k<n 5<k<n

To bound the expectation of the kth degree d(px), we think of running the algorithm backwards—
starting from a convex hull and removing vertices until only the first four remain. The sum of
degrees of all vertices on a given hull is twice the number of hull edges. Thus, the average degree
is at most 6 — 12/n; if we remove a vertex at random, we can expect to remove less than 6 surface
faces. Thus, the expected space is bounded above by 6n.

Time: The time spent constructing faces is constant per face, so we know that data structure
manipulation is expected to be linear by the previous analysis. (You should convince yourself that
you can store the tetr’ization in a data structure that lets you spend constant time per face.) The
crucial quantity for the running time is how many faces are intersected by each segment cpr—we
spend time proportional to this amount in walking from ¢ to py.



30 Chapter 8. Randomized Algorithms

Let us say that four points (p, ¢,r; s) are a conflict if the segment s intersects Apgr. We say that
a conflict arises if the face Apgr is constructed by the algorithm sometime before s is added. (This
definition is a bit redundant—once s is added the algorithm cannot construct Apgr as a face—but
that doesn’t matter.)

We would like to count the expected number of conflicts that arise during an execution of the
algorithm on n points. Let Zo be a random variable that is 1 if the specific conflict A = (p,q,r;s)
arises in the first n steps. The quantity that we want to know is

> Za.
Y conflicts A

The probability that a conflict A arises at step k is the probability that A exists at step k and
did not at step £k — 1. Thus, if we let XA ; be a random variable that is 1 if and only if conflict
A = (p,q,r;s) exists at step i, that is, triangle Apgr is on the surface of the convex hull and s is
outside the hull and projects onto Apgr. In symbols,

ZA = Z Xa,iNXai—1.
1<i<n

We can now evaluate the expectation. First, write the intersection in terms of conditional
probability.

Z Zn = Z Z Xa,iNXai—1
V conflicts A A 1<i<n

Z ZPY(XA71') Pr(Xa,ic1 | Xa,)
A

The conditional term is the probability that one of the three vertices of the triangle of A was chosen
last of ¢ vertices. Thus, we can bound the previous expression by

> ZPr(XAJ-) : %

A

Next we change the order of summation, which allows us to re-write this as
3
25 P
FRREN

The inner sum is a fancy way to count the points outside of the convex hull of the first 7 points. It
is surely less than n.

3
Z ZA gzgnzi’)an:O(nlogn).
V conflicts A i

This shows that the expected time is O(nlogn). At the present time, bounds on the variance
are unknown. There are some tail estimate bounds on the space of the form “The probability that
the space exceeds ¢ times the expectation is at most (c/e)~¢/e.”

8.1.3 Segment Intersection

We can develop an RIC algorithm and data structure for segment intersection as well. Suppose we
are given n segments that have K intersections. We begin with an empty trapezoidation. At stage
k + 1, we insert segment s;y; into the trapezoidation of si, s, ..., sp—this means that we must
figure out which trapezoids siy1 intersects (location) and cut them into smaller trapezoids. As we
will describe in a moment, we use the history of the trapezoidation to locate si41. Our final space
and running time will be O(nlogn + K), expected.

The data structures that we need are:



8.1. Randomized Incremental Construction 31

e a trapezoidation of the k current segments. Decompose the complement of sy, so, ..., sk into
trapezoids by making vertical cuts from each endpoint and intersection point. Each trapezoid
is defined by at most four segments and can have pointers to the at most four trapezoids that
share vertical cuts.

e A history DAG (directed acyclic graph). When we cut a trapezoid 7 into several new “child”
trapezoids by introducing a new segment we push into history and give it pointers down to its
“children.” This is our location structure.

To insert a segment s = siy1, we begin by giving it to the single trapezoid at the top of the
history DAG. This trapezoid has a constant number of children, so it breaks s into the appropriate
number of pieces and passes s down to each child that s intersects. Thus, s is passed down until
it reaches the current trapezoidation—intersections can be reported as s is passed down or in a
separate phase. There s updates all trapezoids it intersects (pushing modified trapezoids up into
the history DAG). The trapezoids’ neighbor pointers are used to merge neighboring trapezoids.

Define a conflict A to be a pair consisting of a trapezoid 7, which is defined by at most four
segments, and a segment s that intersects 7. Again, let Za be an indicator random variable for
conflict A. The cost of the algorithm is exactly ) .,, Za, because we have to pass s through every
trapezoid that it is in conflict with.

As before, if we let XA ; be a random variable that is 1 if and only if conflict A exists at step ¢
then

Z Zn = ZZPr(XA,i) Pr(Xa,i1 | Xa)

V conflicts A A

>0 Pr(Xau)- ?

A g

> ? > Pr(Xa)
A

P

The inner sum is the number of conflicts between segments s;11, ..., s, and the trapezoids at stage
i for a random permutation. This will be O(n(2 + K,4+1/(i + 1))), where K, 1 is the number of
intersections in a random permutation of the first i + 1 segments, which is K(i(i + 1))/(n(n — 1)).

Thus,
n K

Z ZASO(Z—,-FW):O(TLIOgTL-FI().

V conflicts A !

8.1.4 Linear Programming and Generalized LP

We discussed earlier the 2-dimensional linear programming problem. In a general form, the linear
programming problem is to find a vector x € R¢ minimizing - = subject to the linear equations
Az < b. We can express this in geometric terms. Let H; be the hyperplane in R? that is given by
the ith row of A and b;,. Then we find a point p in the intersection of n d-dimensional halfplanes
Hy, H,,...,H, that maximizes p - ¢ for a d-dimensional cost vector ¢.

Let’s assume we are only interested in a solution in some bounding box B: x; € [min, maz], for
each coordinate index 1 < ¢ < d. Then we can solve a d-dimensional linear programming problem
by finding the optimum vertices of the polytopes

P=Bn () H,
1<5<i

by adding one hyperplane at a time.

1. Put the hyperplanes Hy, Hs, ..., H, in a random order.



32 Chapter 8. Randomized Algorithms

2. Let vg be optimum vertex of the bounding box with respect to ¢ There are a constant number
of vertices (2%), so this takes constant time.

3. For ¢ := 1 to n do 4-6:
4. If hyperplane H; contains v;—; then the optimum vertex v; = v;_1.

5. Otherwise, H; cuts v;_; off the polytope P;_; in forming P;. The new optimum vertex v;, if
it exists, is contained in the hyperplane h that bounds H; because the cost increases along the
segment from v; to v;—;. To find it:

(a) Project the cost vector ¢ onto h to obtain .

(b) Recursively solve the d — 1 dimensional linear program of maximizing & in h subject to
B,Hy,...,H;, ;.

(¢) The recursion bottoms out in one dimension, where we can easily find the maximum
satisfying the constraints or determine that no maximum exists.

Linear Programming Theorem. A linear programming problem with n constraints in d dimen-
sions is solved in O(d'n) expected time.

Proof: We can prove this by induction on d. It should be clear that the theorem is true for
dimension d = 1.

Assume the theorem is true for dimension d — 1; we can solve the recursive call in step 6 in
k(d — 1)!(z — 1) time for some constant k. How often do we need to do this? That is, how often is
v; different from v; 1?7 Well, v; is defined by d hyperplanes and it can only be different from v; 1 if
one of these hyperplanes’ constraints is chosen as H;. This happens with probability d/i, since all
orderings are equally likely. Since the expected cost of adding constraint H; is

k(d—1)l(i — 1) - ‘; < kd!

the total expected cost of the algorithm is kd!n. O

8.1.5 Generalized Linear Programming

We can generalize the above algorithm to solve some problems in conver programming—where the
contraints are convex functions, not just linear functions. As an example, let’s look at a devious
algorithm by Emo Welzl for computing the smallest circle enclosing a set of n points. We first
show that the call Circle(S,0) correctly returns this circle and then prove that it does so in O(]S|)
expected time.

Procedure Circle(S, P) returns a circle that passes through
the points of P and contains S, if one exists:
If |S| =0 or |P| = 3 then
Return the smallest circle through P in O(1) time.
Else
Pick a random point p from S.
¢ = Circle(S — {p}, P).
If p € c then
Return ¢
Else
Return Circle(S — {p}, PU {p}).



8.2. Random Sampling 33

If we assume general position, as usual, then the circle enclosing S is defined by either two or
three points of S. (Two points, if they define the diameter of the circle.) Because we start with P
empty, Circle(S, P) can be called with zero, one, two or three points in P.

We prove, by induction on |S], the statement “If Circle(S, P) is called with P being a subset
of the points defining the smallest enclosing circle of S U P, then Circle(S, P) correctly computes
the smallest enclosing circle of S U P.” For the base case, we can prove it by hand for all sets with
|S] <3 and |P| < 3.

Now, we assume that the result is true for sets S’ of size n—1 and prove it for sets S of size n. First,
if |P| = 3, then P contains all the points defining the minimum enclosing circle of S and Circle(S, P)
correctly returns that circle. If |P| < 3, then the first recursive call ¢ = Circle(S — {p}, P) returns
the correct circle enclosing (S — {p}) U P by the induction hypothesis. If p € ¢, then ¢ contains
S U P and is correctly returned. Otherwise, p must be one of the points that defines the minimum
enclosing circle. Therefore the second call Circle(S — {p}, P U {p}) returns the correct circle.

To analyze expected running time, we write recurrences that depend on the number of points
in S and P. Let T;(n) denote the upper bound on the expected running time of Circle(S, P) with
|S| = n and |P| = 3 — i. We want to bound the expected running time T5(n) by O(n).

With this notation, ¢ is the number of points that still must be specified on the smallest enclosing
circle. A call Circle(S, P) will generate the second recursive call Circle(S — {p}, P U {p}) if and
only if p happens one of the i points that define the smallest enclosing circle. The probability of this
is at most /|S|. For some constants ¢ and ', the expected running times satisfy

1

Ti(n) < Tiln—-1)+c + ETO(n -1)
2

TQ(TL) S Tg(n—1)+C,+ET1(TL—1)

3
Tz(n) < Ts3(n—1)+c + —=Ty(n—1)

n
Which have solutions:
Tiln) < dn+clnn<(c+d)n
Ty(n) < (2¢+3c)n
T3(n) < (6c+ 10 )n

By the way, this algorithm can be extended to higher dimensions and to finding smallest ellipsoids.

Suppose d points are needed to define the basic object (sphere, ellipsoid, ... ). Further, suppose the
object defined by d points can be computed in ¢ operations and a point-in-object test takes ¢

operations. (Both ¢ and ¢’ may hide factors of d.) Then we can show that T; < (¢ + ¢')dIn as
follows:

Td(n) S Td(n — 1) + Cl + %Td_l(n — 1)
< (c+c'd)d!(n—1)+c'+g(c+c'(d—1))(d—1)!(n—1)
< (e+cdd)ydn — (c+dd)d + ' + (c+ d)d — (c+ )d!
< (e+cd)dn.

8.2 Random Sampling

Another powerful technique in randomized geometric algorithm design is random sampling. The
general scenerio is that one is given a collection S of geometric objects and asked to construct some
geometric structure for S. The technique involves selecting a random sample Y of S of size r, for
some parameter r, and then using Y to decompose S into subproblems to be solved recursively. The
subproblem solutions are then merged in some way to define the final step in this divide-and-conquer
algorithm.



34 Chapter 8. Randomized Algorithms

8.2.1 Polygon Triangulation Revisited

We illustrate this approach using the specific problem of polygon triangulation. Recall that in this
problem one is given an n-node polygon P, and one wishes to add diagonals to P so that each
internal face is a triangle. As we have shown earlier, it is enough for us to produce a trapezoidal
decomposition of P, where we add a vertical line interior to P up and/or down from each vertex
of P until it hits an edge of P. We already have described a simple O(nlogn)-time method for
producing a trapezoidal decomposition of a set of n segments, which need not be connected. As we
show below, we can easily turn this algorithm into a simple randomized method for triangulating a
simple polygon in O(nloglogn) expected time.

We begin by selecting a random sample, Y, of r = n/logn edges of P. We apply the simple plane-
sweeping algorithm to produce a trapezoidal decomposition, T(Y), of Y in time O(rlogr) = O(n)
time. We then determine, for each trapezoid 7 in T'(Y'), the set, C; of edges of P that intersect the
interior of 7. We refer to this set as the conflict set for 7. We can determine C; by “walking” along
the edges of P noting for each edge s of P the trapezoids we cross as we traverse s (we deposit the
name of s in the conflict set for each such trapezoid). Since each edge of s begins where another ends,
we can perform this entire walk around P in O(n+3__ <7y n-) time, where n- denotes the number
of edges in C.. We complete the algorithm, then, by applying the simple plane-sweep trapezoidal
decomposition algorithm to each C..

Analysis. To analyze this algorithm we concentrate on two important numbers:

max n,, and (8.3)
TET(Y)
> on. (8.4)
TET(Y)

We begin with a bound for (8.3), which holds with n-polynomial probability:
Lemma 8.2.1: max,cp(y)n, < ¢(n/r)logr with probability at least 1 —1/n.

Proof: Each trapezoid 7 in T'(Y) exists because of two facts:

1. Each of the edges defining 7’s boundary are in Y. There are at least two and at most four
such edges.

2. Each of the edges of C; are not in Y.

Moreover, we can abstractly define the complete set of (O(n*)) potential trapezoids in terms of these
two sets of edges, the first of which we call 7's triggers and the second of which we call 7’s killers
(indeed, this notion motivates our calling C; the “conflict set” for 7). This allows us to analyze the
probability that some potential trapezoid 7 is included in T'(Y):

r r

Pr(r € T(Y)) < (—)2 (1- —)’“ .

n n

Using the fact that (1 —z/m)™ < e”, we can bound this probability by

2
(o)
n
where t. = n,/(n/r), a quantity we call the excess for 7. Thus, the probability that a trapezoid
7 with excess more than 2Inr is included in T(Y) is at most 1/n?. Since there are O(r) = O(n)

trapezoids total in T'(Y'), the probability that the (combinatorially) largest trapezoid has excess
more than 2lnr is at most 1/n. O

Having established a bound on (8.3) that holds with n-polynomial probability, we next give an
expected bound on (8.4).



8.2. Random Sampling 35

Lemma 8.2.2: E(}_ cr(y)n-) < cn, for some constant ¢ > 1.

Proof: We establish this lemma by showing that the expected number of trapezoids traversed by a
random edge e of P is O(1). We, in turn, establish this by the now-familiar “backward analysis.”
Let Y’ denote the random sample Y U {e}, which has size r + 1. Note that the number of trapezoids
crossed by e in T'(Y) is proportional to the number of trapezoids of T(Y"') that are not in T(Y),
that is, the number of trapezoids of T'(Y") that would be destroyed by the removal of e from Y.
But with respect to Y’ the edge e appears to be chosen at random from its r + 1 edges. Since any
trapezoid in T'(Y") has at most 4 triggers, this implies that any trapezoid 7 in T'(Y") has probability
at most 4/(r 4+ 1) of being destroyed by the removal of the random edge e from Y. Since there are
O(r) edges total in Y’ this implies that the expected number of edges of T'(Y"') destroyed by the
removal of e is O(1). O

Returning to the analysis of our algorithm, these two lemmas establish that the expected running
time of our randomized polygon trapezoidal decomposition algorithm is O(nloglogn). By being a
little more clever in how we use the random sampling technique we can actually improve this running
time to have an expected value of O(nlog™ n), where log” n is the familiar iterated logarithm function
(defined as the smallest & so that log(k) n < 2, where log(l) n = logn and log(k) n = log log(k_l) n).
The change involves iteratively applying the random sampling technique in a kind of “globally”
recursive fasion.

We begin as described above, constructing the trapezoidal decomposition T'(Y7) of a random
sample Yi (= Y'), whose size is r; = n/logn. We also determine all the conflict sets for T'(Y7)
by traversing the polygon P, as described above. We then define a random sample Y5 of size
ro = n/loglogn of the edges of P. The sample Y3, of course, defines a random sample Y5 N C; of
each C. with expected size n.(n/ry) = n,/loglogn. We then produce a trapezoidal decomposition
of each set Y5 N C; using the simple plane-sweep algorithm. The expected running time of this
computation is O(n, logn./loglogn), which is O(n) for each trapezoid 7 in T'(Y7), by Lemma 8.2.1.
By then removing edges of T(Y7) that are now determined to not be a part of T'(Y3) we can produce
a representation of T'(Y3). Given T'(Y3), we can again traverse the polygon P to determine the
conflict set for each trapezoid in T'(Y2) in O(n) expected time (by Lemma 8.2.2). We may therefore
repeat this method, producing T'(Y;4+1) from T'(Y;) in O(n) time, where each Y; is a random sample
of size n/log(i) n of the edges of P. Since each iteration takes O(n) expected time, and there are
clearly at most log” n iterations, the total time for producing 7'(P) is expected to be O(nlog” n).

8.2.2 ¢Nets, e-Approximations, and e-Cuttings

The random sampling concept can actually be couched in a fairly general setting, which allows for
a wide applicability to geometric problems. We explore this general formulation in this subsection.

Let (X,R) be a set system, where X is an n-element gound set and R is a collection of subsets
of X. Moreover, let us assume that the sets in R, which we will call ranges, are generated by some
geometric property of the elements in X. For example, the set X could be n points in the plane and R
could be all combinatorially-distinct ways of intersecting points in X with disks. Or, alternatively, X
could be a set of n hyperplanes in R? and R could be all combinatorially-distinct ways of intersecting
hyperplanes in X with d-simplices (the d-dimensional generalization of triangles).

For any subset Y C X, we let R|y denote the collection of ranges restricted to Y, i.e.,

Rly = {RNY:R € R}.
The shatter function, mr (n), for (X, R) is defined as follows:
mr(m) = max{|R|y|:Y C X, |Y| =m}.

It provides, in some sense, a measure of the recursive complexity of a set system (X,R). Define
the VC-exponent of (X,R) to be smallest paramenter d such that mz(m) is O(m?) (actually, this



36 Chapter 8. Randomized Algorithms

should be defined as an infimum). This quantity is closely related to (and subsumes) the notion of
VC-dimension, which is common in the Computational Geometry literature. For the remainder of
this section we assume that the set systems we are dealing with have bounded VC-exponent (this is
true, for example, for the set systems mentioned above).

A subset Y C X is an e-net for (X, R) if, for any range R € R, Y N R # 0 any time |R| > en.
Intuitively, the subset Y “captures” all the big ranges.

Theorem 8.2.3: If (X, R) has bounded VC-exponent, then there is a constant ¢ > 0 such that if
Y C X is of size at least crlogr, then Y is a (1/r)-net, with r-polynomial probability.

Proof: Let Y be as above. Let us analyze the probability that Y is a (1/r)-net. Specifically, let R
be some range with |R| > n/r. We can view the value of |Y N R| as a random variable, which has
mean |R|s/n, where s is the size of |Y|. Thus,

Pr(YNR=0) = Pr([YNnR|=0)
= Pr([Y nR| < (1—1)|R|s/n).

We may therefore apply a Chernoff bound to bound this quantity by

e—‘R‘s/?n < 6—5/27’.

If we let d denote the VC-exponent of (X, R), then we know that the number of combinatorially-
distinct ranges, with respect to Y, is O(s?). Thus, the probability that Y is not a (1/r)-net is
bounded by

COSde_S/QT,
for some constant ¢y > 1. We can make this less than 1/r*, for example, by choosing s =
4kdrinrincy. O

A related notion to that of an e-net is that of an e-approzrimation, which is defined as a subset
Y C X such that for each range R € R,

‘|YOR| R| _
- T €.
AR

Note that an e-approximation is automatically an e-net, but an e-net need not be an e-approximation.
We will not prove it here, but, using the Chernoff bounds, one can show that a random subset Y of
size O(r?logr) is a (1/r)-approximation with r-polynomial probability.

As an application of this e-net theory, consider the following problem: one is given a set X of
n hyperplanes in R¢ and asked to produce a triangulation of space (into d-simplices) so that each
simplex intersects at most n/r hyperplanes, for a given parameter 0 < r < n. Such a triangulation is
called an e-cutting, for e = 1/r. We can easily construct a (1/r)-cutting by first forming a (1/r)-net
Y of the set of hyperplanes (under d-simplex ranges), computing the arrangement of the hyperplanes
in Y, and triangulating each face in this arrangement. By the zone lemma for hyperplanes, this will
produce O(|Y'|?) = O(rtlog®r) d-simplices, each of which is guaranteed to intersect at most n/r
hyperplanes. That is, it will construct a (1/r)-cutting.



