
RDF—The basis of the
Semantic Web 3
CHAPTER OUTLINE

Distributing Data across the Web ... 28

Merging Data from Multiple Sources .. 32

Namespaces, URIs, and Identity... 33

Expressing URIs in print ..35

Standard namespaces ...37

Identifiers in the RDF Namespace... 38

Higher-order Relationships .. 42

Alternatives for Serialization ... 44

N-Triples..44

Turtle...45

RDF/XML... 46

Blank Nodes ... 47

Ordered information in RDF ...48

Summary .. 49

Fundamental concepts ..49

RDF, RDFS, and OWL are the basic representation languages of the Semantic Web, with RDF serving

as the foundation. RDF addresses one fundamental issue in the Semantic Web: managing distributed

data. All other Semantic Web standards build on this foundation of distributed data. RDF relies heavily

on the infrastructure of the Web, using many of its familiar and proven features, while extending them

to provide a foundation for a distributed network of data.

The Web that we are accustomed to is made up of documents that are linked to one another. Any

connection between a document and the thing(s) in the world it describes is made only by the person

who reads the document. There could be a link from a document about Shakespeare to a document

about Stratford-upon-Avon, but there is no notion of an entity that is Shakespeare or linking it to the

thing that is Stratford.

In the Semantic Web we refer to the things in the world as resources; a resource can be anything

that someone might want to talk about. Shakespeare, Stratford, “the value of X,” and “all the cows in

Texas” are all examples of things someone might talk about and that can be resources in the Semantic

Web. This is admittedly a pretty odd use of the word resource, but alternatives like entity or thing,

which might be more accurate, have their own issues. In any case, resource is the word used in the

CHAPTER

Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL DOI: 10.1016/B978-0-12-385965-5.10003-2

Copyright � 2011 Elsevier Inc. All rights reserved.
27

Semantic Web standards. In fact, the name of the base technology in the Semantic Web (RDF) uses this

word in an essential way. RDF stands for Resource Description Framework.

In a web of information, anyone can contribute to our knowledge about a resource. It was

this aspect of the current Web that allowed it to grow at such an unprecedented rate. To implement

the Semantic Web, we need a model of data that allows information to be distributed over the

Web.

DISTRIBUTING DATA ACROSS THE WEB

Data are most often represented in tabular form, in which each row represents some item we are

describing, and each column represents some property of those items. The cells in the table are the

particular values for those properties. Table 3.1 shows a sample of some data about works completed

around the time of Shakespeare.

Let’s consider a few different strategies for how these data could be distributed over the Web. In all

of these strategies, some part of the data will be represented on one computer, while other parts will be

represented on another. Figure 3.1 shows one strategy for distributing information over many

machines. Each networked machine is responsible for maintaining the information about one or more

complete rows from the table. Any query about an entity can be answered by the machine that stores its

corresponding row. One machine is responsible for information about “Sonnet 78” and Edward II,

whereas another is responsible for information about As You Like It.

This distribution solution provides considerable flexibility, since the machines can share the load of

representing information about several individuals. But because it is a distributed representation of

data, it requires some coordination between the servers. In particular, each server must share infor-

mation about the columns. Does the second column on one server correspond to the same information

as the second column on another server? This is not an insurmountable problem, and, in fact, it is

a fundamental problem of data distribution. There must be some agreed-on coordination between the

servers. In this example, the servers must be able to, in a global way, indicate which property each

column corresponds to.

Table 3.1 Tabular Data about Elizabethan Literature and Music

ID Title Author Medium Year

1 As You Like It Shakespeare Play 1599

2 Hamlet Shakespeare Play 1604

3 Othello Shakespeare Play 1603

4 “Sonnet 78” Shakespeare Poem 1609

5 Astrophil and Stella Sir Phillip Sidney Poem 1590

6 Edward II Christopher Marlowe Play 1592

7 Hero and Leander Christopher Marlowe Poem 1593

8 Greensleeves Henry VIII Rex Song 1525

28 CHAPTER 3 RDF—The basis of the Semantic Web

Figure 3.2 shows another strategy, in which each server is responsible for one or more complete

columns from the original table. In this example, one server is responsible for the publication dates

and medium, and another server is responsible for titles. This solution is flexible in a different way

from the solution of Figure 3.1. The solution in Figure 3.2 allows each machine to be responsible for

one kind of information. If we are not interested in the dates of publication, we needn’t consider

information from that server. If we want to specify something new about the entities (say, how many

pages the manuscript is), we can add a new server with that information without disrupting the

others.

This solution is similar to the solution in Figure 3.1 in that it requires some coordination between

the servers. In this case, the coordination has to do with the identities of the entities to be described.

How do I know that row 3 on one server refers to the same entity as row 3 on another server? This

solution requires a global identifier for the entities being described.

The strategy outlined in Figure 3.3 is a combination of the previous two strategies, in which

information is neither distributed row by row nor column by column but instead is distributed cell by

cell. Each machine is responsible for some number of cells in the table. This system combines the

flexibility of both of the previous strategies. Two servers can share the description of a single entity

(in the figure, the year and title of Hamlet are stored separately), and they can share the use of

a particular property (in Figure 3.3, the Mediums of rows 6 and 7 are represented on different

servers).

This flexibility is required if we want our data distribution system to really support the AAA slogan

that “Anyone can say Anything about Any topic.” If we take the AAA slogan seriously, any server

needs to be able to make a statement about any entity (as is the case in Figure 3.2), but also any server

needs to be able to specify any property of an entity (as is the case in Figure 3.1). The solution in

Figure 3.3 has both of these benefits.

1599PlayShakespeareAs You Like It1

Needs common schema—which

column is which?
Edward II6 1592

1609

Play

Poem

Christopher Marlowe

ShakespeareSonnet 784

1603

1593

Play

Poem

Shakespeare

Christopher Marlowe

Othello

Hero and Leander

3

7

FIGURE 3.1

Distributing data across the Web, row by row.

Distributing data across the Web 29

Needs to reference both

schema and entities
PoemRow 7

Title

Medium

ShakespeareRow 4

Author

1604Row 2

Year

PlayRow 6

Medium

Row 2 Hamlet

FIGURE 3.3

Distributing data across the Web, cell by cell.

Needs to reference

entities—which thing

are we talking about?

Greensleeves

Hero and Leander

Edward II

Astrophil and Stella

“Sonnet 78”

Othello

Hamlet

As You Like It

Title

Henry VIII Rex

Christopher
Marlowe

Christopher
Marlowe

Sir Phillip Sidney

Shakespeare

Shakespeare

Shakespeare

Shakespeare

Author

Song1525

Poem1593

Play1592

Poem1590

Poem1609

Play1603

Play1604

Play1599

MediumYear

FIGURE 3.2

Distributing data across the Web, column by column.

30 CHAPTER 3 RDF—The basis of the Semantic Web

But this solution also combines the costs of the other two strategies. Not only do we now need

a global reference for the column headings, but we also need a global reference for the rows. In fact,

each cell has to be represented with three values: a global reference for the row, a global reference for

the column, and the value in the cell itself. This third strategy is the strategy taken by RDF. We will see

how RDF resolves the issue of global reference later in this chapter, but for now, we will focus on how

a table cell is represented and managed in RDF.

Since a cell is represented with three values, the basic building block for RDF is called the triple.

The identifier for the row is called the subject of the triple (following the notion from elementary

grammar, since the subject is the thing that a statement is about). The identifier for the column is called

the predicate of the triple (since columns specify properties of the entities in the rows). The value in the

cell is called the object of the triple. Table 3.2 shows the triples in Figure 3.3 as subject, predicate, and

object.

Triples become more interesting when more than one triple refers to the same entity, such as in

Table 3.3. When more than one triple refers to the same thing, sometimes it is convenient to view the

triples as a directed graph in which each triple is an edge from its subject to its object, with the

predicate as the label on the edge, as shown in Figure 3.4. The graph visualization in Figure 3.4

expresses the same information presented in Table 3.3, but everything we know about Shakespeare

(either as subject or object) is displayed at a single node.

Table 3.2 Sample Triples

Subject Predicate Object

Row 7 Medium Poem

Row 2 Title Hamlet

Row 2 Year 1604

Row 4 Author Shakespeare

Row 6 Medium Play

Table 3.3 Sample Triples

Subject Predicate Object

Shakespeare wrote King Lear

Shakespeare wrote Macbeth

Anne Hathaway married Shakespeare

Shakespeare livedIn Stratford

Stratford isIn England

Macbeth setIn Scotland

England partOf UK

Scotland partOf UK

Distributing data across the Web 31

MERGING DATA FROM MULTIPLE SOURCES

We started off describing RDF as a way to distribute data over several sources. But when we want to

use that data, we will need to merge those sources back together again. One value of the triples

representation is the ease with which this kind of merger can be accomplished. Since information is

represented simply as triples, merged information from two graphs is as simple as forming the graph

of all of the triples from each individual graph, taken together. Let’s see how this is accomplished

in RDF.

Suppose that we had another source of information that was relevant to our example from Table

3.3—that is, a list of plays that Shakespeare wrote or a list of parts of the United Kingdom. These

would be represented as triples as in Tables 3.4 and 3.5. Each of these can also be shown as a graph,

just as in the original table, as shown in Figure 3.5.

What happens when we merge together the information from these three sources? We simply get

the graph of all the triples that show up in Figures 3.4 and 3.5. Merging graphs like those in Figures 3.4

and 3.5 to create a combined graph like the one shown in Figure 3.6 is a straightforward process—but

only when it is known which nodes in each of the source graphs match.

FIGURE 3.4

Graph display of triples from Table 3.3. Eight triples appear as eight labeled edges.

Table 3.4 Triples about Shakespeare’s Plays

Subject Predicate Object

Shakespeare Wrote As You Like It

Shakespeare Wrote Henry V

Shakespeare Wrote Love’s Labour’s Lost

Shakespeare Wrote Measure for Measure

Shakespeare Wrote Twelfth Night

Shakespeare Wrote The Winter’s Tale

Shakespeare Wrote Hamlet

Shakespeare Wrote Othello

etc.

32 CHAPTER 3 RDF—The basis of the Semantic Web

NAMESPACES, URIS, AND IDENTITY

The essence of the merge comes down to answering the question “When is a node in one graph the

same node as a node in another graph?” In RDF, this issue is resolved through the use of Uniform

Resource Identifiers (URIs).

In the figures so far, we have labeled the nodes and edges in the graphs with simple names like

Shakespeare or Wales. On the Semantic Web, this is not sufficient information to determine whether

two nodes are really the same. Why not? Isn’t there just one thing in the universe that everyone agrees

refers to as Shakespeare? When referring to agreement on the Web, never say, “everyone.” Some-

where, someone will refer not to the historical Shakespeare but to the title character of the feature film

Shakespeare in Love,which bears very little resemblance to the historical figure. And “Shakespeare” is

one of the more stable concepts to appear on the Web; consider the range of referents for a name like

“Washington” or “Bordeaux.” To merge graphs in a Semantic Web setting, we have to be more

specific: In what sense do we mean the word Shakespeare?

RDF borrows its solution to this problem from foundational Web technology—in particular, the

URI. The syntax and format of a URI are familiar even to casual users of the Web today because of the

special, but typical, case of the URL—for example, http://www.WorkingOntologist.org/Examples/

Chapter3/Shakespeare#Shakespeare. But the significance of the URI as a global identifier for a Web

resource is often not appreciated. A URI provides a global identification for a resource that is common

across the Web. If two agents on the Web want to refer to the same resource, recommended practice on

the Web is for them to agree to a common URI for that resource. This is not a stipulation that is

particular to the Semantic Web but to theWeb in general; global naming leads to global network effects.

URIs and URLs look exactly the same, and, in fact, a URL is just a special case of the URI. Why

does theWeb have both of these ideas? Simplifying somewhat, the URI is an identifier with global (i.e.,

“World Wide” in the “World Wide Web” sense) scope. Any two Web applications in the world can

refer to the same thing by referencing the same URI. But the syntax of the URI makes it possible to

“dereference” it—that is, to use all the information in the URI (which specifies things like server name,

protocol, port number, file name, etc.) to locate a file (or a location in a file) on the Web.1 This

Table 3.5 Triples about the Parts of the United Kingdom

Subject Predicate Object

Scotland part Of The UK

England part Of The UK

Wales part Of The UK

Northern Ireland part Of The UK

Channel Islands part Of The UK

Isle of Man part Of The UK

1We are primarily discussing files here, but a URI can refer to other resources. The Wikipedia article on URIs

includes more than 50 different resource types that can be referenced by URIs—see http://en.wikipedia.org/wiki/URI_

scheme.

Namespaces, URIs, and identity 33

dereferencing succeeds if all these parts work; the protocol locates the specified server running on the

specified port and so on. When this is the case, we can say that the URI is not just a URI, but it also is

a URL. From the point of view of modeling, the distinction is not important. But from the point of view

of having a model on the Semantic Web, the fact that a URI can potentially be dereferenced allows the

models to participate in a global Web infrastructure.

(a)

(b)

FIGURE 3.5

Graphic representation of triples describing (a) Shakespeare’s plays and (b) parts of the United Kingdom.

34 CHAPTER 3 RDF—The basis of the Semantic Web

RDF applies the notion of the URI to resolve the identity problem in graph merging. The appli-

cation is quite simple: A node from one graph is merged with a node from another graph—exactly, if

they have the same URI. On the one hand, this may seem disingenuous, “solving” the problem of node

identity by relying on another standard to solve it. On the other hand, since issues of identity appear in

the Web in general and not just in the Semantic Web, it would be foolish not to use the same strategy to

resolve the issue in both cases.

Expressing URIs in print

URIs work very well for expressing identity on the World Wide Web, but they are typically a bit

of a pain to write out in detail when expressing models, especially in print. So for the examples in

this book, we use a simplified version of a URI abbreviation scheme called qnames. In its simplest

FIGURE 3.6

Combined graph of all triples about Shakespeare and the United Kingdom.

Namespaces, URIs, and identity 35

form, a URI expressed as a qname has two parts: a namespace and an identifier, written with a colon

between. So the qname representation for the identifier England in the namespace geo is simply

geo:England. The RDF/XML standard includes elaborate rules that allow programmers to map

namespaces to other URI representations (such as the familiar http:// notation). For the examples in

this book, we will use the simple qname form for all URIs. It is important, however, to note that

qnames are not global identifiers on the Web; only fully qualified URIs (e.g., http://www

.WorkingOntologist.org/Examples/Chapter3/Shakespeare#Shakespeare) are global Web names.

Thus, any representation of a qname must, in principle, be accompanied by a declaration of the

namespace correspondence.

It is customary on the Web in general and part of the XML specification to insist that URIs contain

no embedded spaces. For example, an identifier “part of ” is typically not used in the web. Instead, we

follow the InterCap convention (sometimes called CamelCase), whereby names that are made up of

multiple words are transformed into identifiers without spaces by capitalizing each word. Thus, “part

of ” becomes partOf, “Great Britain” becomes GreatBritain, “Measure for Measure” becomes

MeasureForMeasure, and so on.

There is no limitation on the use of multiple namespaces in a single source of data, or even in

a single triple. Selection of namespaces is entirely unrestricted as far as the data model and standards

are concerned. It is common practice, however, to refer to related identifiers in a single namespace. For

instance, all of the literary or geographical information from Table 3.4 or Table 3.5 would be placed

into one namespace per table, with a suggestive name—say, lit or geo—respectively. Strictly speaking,

these names correspond to fully qualified URIs—for example, lit stands for http://www

.WorkingOntologist.com/Examples/Chapter3/Shakespeare#, and geo stands for http://www

.WorkingOntologist.com/Examples/Chapter3/geography#.

For the purposes of explaining modeling on the Semantic Web, the detailed URIs behind the

qnames are not important, so for the most part, we will omit these bindings from now on. In many

examples, we will take this notion of abbreviation one step further; in the cases when we use a single

namespace throughout one example, we will assume there is a default namespace declaration that

allows us to refer to URIs simply with a symbolic name preceded by a colon (:), such as :Shake-

speare, :JamesDean, :Researcher.

Table 3.6 Plays of Shakespeare with Qnames

Subject Predicate Object

lit:Shakespeare lit:wrote lit:AsYouLikeIt

lit:Shakespeare lit:wrote lit:HenryV

lit:Shakespeare lit:wrote lit:LovesLaboursLost

lit:Shakespeare lit:wrote lit:MeasureForMeasure

lit:Shakespeare lit:wrote lit:TwelfthNight

lit:Shakespeare lit:wrote lit:WintersTale

lit:Shakespeare lit:wrote lit:Hamlet

lit:Shakespeare lit:wrote lit:Othello

etc.

36 CHAPTER 3 RDF—The basis of the Semantic Web

Using qnames, our triple sets now look as shown in Tables 3.6 and 3.7. Compare Table 3.6 with

Table 3.4, and compare Table 3.7 with Table 3.5. But it isn’t always that simple; some triples will have

to use identifiers with different namespaces, as in the example in Table 3.8, which was taken from

Table 3.3.

In Table 3.8, we introduced a new namespace, bio:, without specifying the actual URI to which it

corresponds. For this model to participate on the Web, this information must be filled in. But from

the point of view of modeling, this detail is unimportant. For the rest of this book, we will assume

that the prefixes of all qnames are defined, even if that definition has not been specified explicitly in

print.

Standard namespaces

Using the URI as a standard for global identifiers allows for a worldwide reference for any symbol.

This means that we can tell when any two people anywhere in the world are referring to the same

thing.

This property of the URI provides a simple way for a standard organization (like the W3C) to

specify the meaning of certain terms in the standard. As we will see in coming chapters, the W3C

standards provide definitions for terms such as type, subClassOf, Class, inverseOf, and so

forth. But these standards are intended to apply globally across the Semantic Web, so the standards

Table 3.7 Geographical Information as Qnames

Subject Predicate Object

geo:Scotland geo:partOf geo:UK

geo:England geo:partOf geo:UK

geo:Wales geo:partOf geo:UK

geo:NorthernIreland geo:partOf geo:UK

geo:ChannelIslands geo:partOf geo:UK

geo:IsleOfMan geo:partOf geo:UK

Table 3.8 Triples Referring to URIs with a Variety of Namespaces

Subject Predicate Object

lit:Shakespeare lit:wrote lit:KingLear

lit:Shakespeare lit:wrote lit:MacBeth

bio:AnneHathaway bio:married lit:Shakespeare

bio:AnneHathaway bio:livedWith lit:Shakespeare

lit:Shakespeare bio:livedIn geo:Stratford

geo:Stratford geo:isIn geo:England

geo:England geo:partOf geo:UK

geo:Scotland geo:partOf geo:UK

Namespaces, URIs, and identity 37

refer to these reserved words in the same way as they refer to any other resource on the Semantic Web,

as URIs.

The W3C has defined a number of standard namespaces for use with Web technologies, including

xsd: for XML schema definition; xmlns: for XML namespaces; and so on. The Semantic Web is

handled in exactly the same way, with namespace definitions for the major layers of the Semantic Web.

Following standard practice with the W3C, we will use qnames to refer to these terms, using the

following definitions for the standard namespaces.

rdf: Indicates identifiers used in RDF. The set of identifiers defined in the standard is quite small

and is used to define types and properties in RDF. The global URI for the rdf namespace is http://

www.w3.org/1999/02/22-rdf-syntax-ns#.

rdfs: Indicates identifiers used for the RDF Schema language, RDFS. The scope and semantics of

the symbols in this namespace are the topics of future chapters. The global URI for the rdfs

namespace is http://www.w3.org/2000/01/rdf-schema#.

owl: Indicates identifiers used for the Web Ontology Language, OWL. The scope and semantics of

the symbols in this namespace are the topics of future chapters. The global URI for the owl

namespace is http://www.w3.org/2002/07/owl#.

These URIs provide a good example of the interaction between a URI and a URL. For modeling

purposes, any URI in one of these namespaces (e.g., http://www.w3.org/2000/01/rdf-schema#

subClassOf, or rdfs:subClassOf for short) refers to a particular term that the W3C makes

some statements about in the RDFS standard. But the term can also be dereferenced—that is, if we

look at the server www.w3.org, there is a page at the location 2000/01/rdf-schema with an entry

about subClassOf, giving supplemental information about this resource. From the point of view of

modeling, it is not necessary that it be possible to dereference this URI, but from the point of view of

Web integration, it is critical that it is.

IDENTIFIERS IN THE RDF NAMESPACE

The RDF data model specifies the notion of triples and the idea of merging sets of triples as just shown.

With the introduction of namespaces, RDF uses the infrastructure of the Web to represent agreements

Table 3.9 Using rdf:type to Describe Playwrights

Subject Predicate Object

lit:Shakespeare rdf:type lit:Playwright

lit:Ibsen rdf:type lit:Playwright

lit:Simon rdf:type lit:Playwright

lit:Miller rdf:type lit:Playwright

lit:Marlowe rdf:type lit:Playwright

lit:Wilder rdf:type lit:Playwright

38 CHAPTER 3 RDF—The basis of the Semantic Web

on how to refer to a particular entity. The RDF standard itself takes advantage of the namespace

infrastructure to define a small number of standard identifiers in a namespace defined in the standard,

a namespace called rdf.

rdf:type is a property that provides an elementary typing system in RDF. For example, we can

express the relationship between several playwrights using type information, as shown in Table 3.9.

The subject of rdf:type in these triples can be any identifier, and the object is understood to be

a type. There is no restriction on the usage of rdf:type with types; types can have types ad

infinitum, as shown in Table 3.10.

When we read a triple out loud (or just to ourselves), it is understandably tempting to read it (in

English, anyway) in subject/predicate/object order so that the first triple in Table 3.9 would read,

“Shakespeare type Playwright.” Unfortunately, this is pretty fractured syntax no matter how you inflect

it. It would be better to have something like “Shakespeare has type Playwright” or maybe “The type of

Shakespeare is Playwright.”

This issue really has to do with the choice of name for the rdf:type resource; if it had been

called rdf:isInstanceOf instead, it would have been much easier to read out loud in English. But

since we never have control over how other entities (in this case, the W3C) chose their names, we don’t

have the luxury of changing these names. When we read out loud, we just have to take some liberties in

adding in connecting words. So this triple can be pronounced, “Shakespeare [has] type Playwright,”

adding in the “has” (or sometimes, the word “is” works better) to make the sentence into somewhat

correct English.

rdf:Property is an identifier that is used as a type in RDF to indicate when another identifier is

to be used as a predicate rather than as a subject or an object. We can declare all the identifiers we have

used as predicates so far in this chapter as shown in Table 3.11.

Table 3.10 Defining Types of Names

Subject Predicate Object

lit:Playwright rdf:type bus:Profession

bus:Profession rdf:type hr:Compensation

Table 3.11 rdf:Property Assertions for Tables 3.5 to 3.8

Subject Predicate Object

lit:wrote rdf:type rdf:Property

geo:partOf rdf:type rdf:Property

bio:married rdf:type rdf:Property

bio:livedIn rdf:type rdf:Property

bio:livedWith rdf:type rdf:Property

geo:isIn rdf:type rdf:Property

Identifiers in the RDF namespace 39

CHALLENGE: RDF AND TABULAR DATA

We began this chapter by motivating RDF as a way to distribute data over the Web—in particular,

tabular data. Now that we have all of the detailed mechanisms of RDF (including namespaces and

triples) in place, we can revisit tabular data and show how to represent it consistently in RDF.

CHALLENGE 1

Given a table from a relational database, describing products, suppliers, and stocking information about the

products (see Table 3.12), produce an RDF graph that reflects the content of Table 3.12 in such a way that

the information intent is preserved but the data are now amenable for RDF operations like merging and RDF

query.

Solution
Each row in the table describes a single entity, all of the same type. That type is given by the name of the table

itself, Product. We know certain information about each of these items, based on the columns in the table itself,

such as the model number, the division, and so on. We want to represent these data in RDF.

Since each row represents a distinct entity, each row will have a distinct URI. Fortunately, the need for

unique identifiers is just as present in the database as it is in the Semantic Web, so there is a (locally) unique

identifier available—namely, the primary table key, in this case the column called ID. For the Semantic Web,

we need a globally unique identifier. The simplest way to form such an identifier is by having a single URI for

the database itself (perhaps even a URL if the database is on the Web). Use that URI as the namespace for

all the identifiers in the database. Since this is a database for a manufacturing company, let’s call that

namespace mfg:.

Table 3.12 Sample Tabular Data for Triples

Product

ID

Model

Number Division

Product

Line

Manufacture

Location SKU Available

1 ZX-3 Manufacturing

support

Paper

machine

Sacramento FB3524 23

2 ZX-3P Manufacturing

support

Paper

machine

Sacramento KD5243 4

3 ZX-3S Manufacturing

support

Paper

machine

Sacramento IL4028 34

4 B-1430 Control

engineering

Feedback

line

Elizabeth KS4520 23

5 B-1430X Control

engineering

Feedback

line

Elizabeth CL5934 14

6 B-1431 Control

engineering

Active

sensor

Seoul KK3945 0

7 DBB-12 Accessories Monitor Hong Kong ND5520 100

8 SP-1234 Safety Safety valve Cleveland HI4554 4

9 SPX-1234 Safety Safety valve Cleveland OP5333 14

40 CHAPTER 3 RDF—The basis of the Semantic Web

Then we can create an identifier for each line by concatenating the table name “Product” with the unique key

and expressing this identifier in the mfg: namespace, resulting in identifiers mfg:Product1,
mfg:Product2, and so on.

Each row in the table says several things about that item—namely, its model number, its division, and so

on. To represent this in RDF, each of these will be a property that will describe the Products. But just as is

the case for the unique identifiers for the rows, we need to have global unique identifiers for these properties.

We can use the same namespace as we did for the individuals, but since two tables could have the same

column name (but they aren’t the same properties!), we need to combine the table name and the column

name. This results in properties like mfg:Product_ModelNo, mfg:Product_Division,

and so on.

With these conventions in place, we can now express all the information in the table as triples. There will be

one triple per cell in the table—that is, for n rows and c columns, there will be n � c triples. The data shown in

Table 3.12 have 7 columns and 9 rows, so there are 63 triples, as shown in Table 3.13.

The triples in the table are a bit different from the triples we have seen so far. Although the subject and

predicate of these triples are RDF resources (complete with qname namespaces!), the objects are not resources

but literal data—that is, strings, integers, and so forth. This should come as no surprise, since, after all, RDF is

a data representation system. RDF borrows from XML all the literal data types as possible values for the object of

a triple; in this case, the types of all data are strings or integers.

The usual interpretation of a table is that each row in the table corresponds to one individual and that the type

of these individuals corresponds to the name of the table. In Table 3.12, each row corresponds to a Product. We

can represent this in RDF by adding one triple per row that specifies the type of the individual described by each

row, as shown in Table 3.14.

The full complement of triples from the translation of the information in Table 3.12 is shown in Figure 3.7. The

types (i.e., where the predicate isrdf:type, and the object is the classmfg:Product) are shown as links

in the graph; triples in which the object is a literal datum are shown (for sake of compactness in the figure) within

a box labeled by their common subject.

Table 3.13 Triples Representing Some of the Data in Table 3.12

Subject Predicate Object

mfg:Product1 mfg:Product_ID 1

mfg:Product1 mfg:Product_ModelNo ZX-3

mfg:Product1 mfg:Product_Division Manufacturing support

mfg:Product1 mfg:Product_Product_Line Paper machine

mfg:Product1 mfg:Product_Manufacture_Location Sacramento

mfg:Product1 mfg:Product_SKU FB3524

mfg:Product1 mfg:Product_Available 23

mfg:Product2 mfg:Product_ID 2

mfg:Product2 mfg:Product_ModelNo ZX-3P

mfg:Product2 mfg:Product_Division Manufacturing support

mfg:Product2 mfg:Product_Product_Line Paper machine

mfg:Product2 mfg:Product_Manufacture_Location Sacramento

mfg:Product2 mfg:Product_SKU KD5243

mfg:Product2 mfg:Product_Available 4.

Challenge: RDF and tabular data 41

Table 3.14 Triples Representing Type of Information from Table 3.12

Subject Predicate Object

mfg:Product1 rdf:type mfg:Product

mfg:Product2 rdf:type mfg:Product

mfg:Product3 rdf:type mfg:Product

mfg:Product4 rdf:type mfg:Product

mfg:Product5 rdf:type mfg:Product

mfg:Product6 rdf:type mfg:Product

mfg:Product7 rdf:type mfg:Product

mfg:Product8 rdf:type mfg:Product

mfg:Product9 rdf:type mfg:Product

HIGHER-ORDER RELATIONSHIPS

It is not unusual for someone who is building a model in RDF for the first time to feel a bit limited by

the simple subject/predicate/object form of the RDF triple. They don’t want to just say that

Shakespeare wrote Hamlet, but they want to qualify this statement and say that Shakespeare wrote

Hamlet in 1604 or that Wikipedia states that Shakespeare wrote Hamlet in 1604. In general, these are

cases in which it is, or at least seems, desirable to make a statement about another statement. This

process is called reification. Reification is not a problem specific to Semantic Web modeling; the

same issue arises in other data modeling contexts like relational databases and object systems. In

fact, one approach to reification in the Semantic Web is to simply borrow the standard solution that is

commonly used in relational database schemas, using the conventional mapping from relational

tables to RDF given in the preceding challenge. In a relational database table, it is possible to simply

create a table with more columns to add additional information about a triple. So the statement

Shakespeare wrote Hamlet is expressed (as in Table 3.1) in a single row of a table, where there is

a column for the author of a work and another column for its title. Any further information about this

event is done with another column (again, just as in Table 3.1). When this is converted to RDF

according to the example in the Challenge, the row is represented by a number of triples, one triple

per column in the database. The subject of all of these triples is the same: a single resource that

corresponds to the row in the table.

An example of this can be seen in Table 3.13, where several triples have the same subject and one

triple apiece for each column in the table. This approach to reification has a strong pedigree in rela-

tional modeling, and it has worked well for a wide range of modeling applications. It can be applied in

RDF even when the data have not been imported from tabular form. That is, the statement Shakespeare

wrote Hamlet in 1601 (disagreeing with the statement in Table 3.2) can be expressed with these three

triples:

bio:n1 bio:author lit:Shakespeare.
bio:n1 bio:title “Hamlet”.
bio:n1 bio:publicationDate 1601.

42 CHAPTER 3 RDF—The basis of the Semantic Web

This approach works well for examples like Shakespeare wrote Hamlet in 1601, in which we

want to express more information about some event or statement. It doesn’t work so well in cases like

Wikipedia says Shakespeare wrote Hamlet, in which we are expressing information about the

statement itself, Shakespeare wrote Hamlet. This kind of metadata about statements often takes the

form of provenance (information about the source of a statement, as in this example), likelihood

(expressed in some quantitative form like probability, such as It is 90 percent probable

that Shakespeare wrote Hamlet), context (specific information about a project setting in which

a statement holds, such as Kenneth Branagh played Hamlet in the movie), or time frame (Hamlet

plays on Broadway January 11 through March 12). In such cases, it is useful to explicitly make

a statement about a statement. This process, called explicit reification, is supported by the W3C RDF

standard with three resources called rdf:subject, rdf:predicate, and rdf:object.

FIGURE 3.7

Graphical version of the tabular data from Table 3.12.

Higher-order relationships 43

Let’s take the example of Wikipedia says Shakespeare wrote Hamlet. Using the RDF standard, we

can refer to a triple as follows:

q:n1 rdf:subject lit:Shakespeare;
rdf:predicate lit:wrote;
rdf:object lit:Hamlet.

Then we can express the relation of Wikipedia to this statement as follows:

web:Wikipedia m:says q:n1.

Notice that just because we have asserted the reification triples about q:n1, it is not necessarily the

case that we have also asserted the triple itself:

lit:Shakespeare lit:wrote lit:Hamlet.

This is as it should be; after all, if an application does not trust information from Wikipedia, then it

should not behave as though that triple has been asserted. An application that does trust Wikipedia will

want to behave as though it had.

ALTERNATIVES FOR SERIALIZATION

So far, we have expressed RDF triples in subject/predicate/object tabular form or as graphs of boxes

and arrows. Although these are simple and apparent forms to display triples, they aren’t always

the most compact forms, or even the most human-friendly form, to see the relations between entities.

The issue of representing RDF in text doesn’t only arise in books and documents about RDF; it also

arises when we want to publish data in RDF on the Web. In response to this need, there are multiple

ways of expressing RDF in textual form.

N-Triples

The simplest form is called N-Triples and corresponds most directly to the raw RDF triples. It refers to

resources using their fully unabbreviated URIs. Each URI is written between angle brackets (< and>).

Three resources are expressed in subject/predicate/object order, followed by a period (.). For exam-

ple, if the namespace mfg corresponds to http://www.WorkingOntologist.org/Examples/Chapter3

Manufacture#, then the first triple from Table 3.14 is written in N-Triples as follows:

<http://www.WorkingOntologist.org/Examples/Chapter3Manufacture#

http://www.WorkingOntologist.org/Examples/Chapter3/Manufacture#Product1

http://www.WorkingOntologist.org/Examples/Chapter3/Manufacture#Product

It is difficult to print N-Triples on a page in a book—the serialization does not allow for new lines

within a triple (as we had to do here, to fit it in the page). An actual ntriple file has the whole triple on

a single line.

44 CHAPTER 3 RDF—The basis of the Semantic Web

Turtle

In this book, we use a more compact serialization of RDF called Turtle. Turtle combines the apparent

display of triples from N-Triples with the terseness of qnames. We will introduce Turtle in this section

and describe just the subset required for the current examples. We will describe more of the language

as needed for later examples. For a full description of Turtle, see the W3C Turtle team submission.1

Since Turtle uses qnames, there must be a binding between the (local) qnames and the (global)

URIs. Hence, Turtle begins with a preamble in which these bindings are defined; for example, we can

define the qnames needed in the Challenge example with the following preamble:

@prefix mfg:
<http://www.WorkingOntologist.com/Examples/Chapter3/Manufac

turing#>
@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

Once the local qnames have been defined, Turtle provides a very simple way to express a triple by

listing three resources, using qname abbreviations, in subject/predicate/object order, followed by

a period, such as the following:

mfg:Product1 rdf:type mfg:Product .

The final period can come directly after the resource for the object, but we often put a space in front

of it, to make it stand out visually. This space is optional.

It is quite common (especially after importing tabular data) to have several triples that share

a common subject. Turtle provides for a compact representation of such data. It begins with the first

triple in subject/predicate/object order, as before; but instead of terminating with a period, it uses

a semicolon (;) to indicate that another triple with the same subject follows. For that triple, only the

predicate and object need to be specified (since it is the same subject from before). The information in

Tables 3.13 and 3.14 about Product1 and Product2 appears in Turtle as follows:

mfg:Product1 rdf:type mfg:Product;
mfg:Product_Division “Manufacturing support”;
mfg:Product_ID “1”;
mfg:Product_Manufacture_Location “Sacramento”;
mfg:Product_ModelNo “ZX-3”;
mfg:Product_Product_Line “Paper Machine”;
mfg:Product_SKU “FB3524”;
mfg:Product_Available “23” .

mfg:Product2 rdf:type mfg:Product;
mfg:Product_Division “Manufacturing support”;
mfg:Product_ID “2”;
mfg:Product_Manufacture_Location “Sacramento”;
mfg:Product_ModelNo “ZX-3P”;
mfg:Product_Product_Line “Paper Machine”;
mfg:Product_SKU “KD5243”;
mfg:Product_Available “4” .

1http://www.w3.org/TeamSubmission/turtle/

Alternatives for serialization 45

When there are several triples that share both subject and predicate, Turtle provides a compact way to

express this as well so that neither the subject nor the predicate needs to be repeated. Turtle uses

a comma (,) to separate the objects. So the fact that Shakespeare had three children named Susanna,

Judith, and Hamnet can be expressed as follows:

lit:Shakespeare b:hasChild b:Susanna, b:Judith, b:Hamnet.

There are actually three triples represented here—namely:

lit:Shakespeare b:hasChild b:Susanna.
lit:Shakespeare b:hasChild b:Judith.
lit:Shakespeare b:hasChild b:Hamnet.

Turtle provides some abbreviations to improve terseness and readability; in this book, we use just

a few of these. One of the most widely used abbreviations is to use the word a to mean rdf:type.

The motivation for this is that in common speech, we are likely to say, “Product1 is a Product” or

“Shakespeare is a playwright” for the triples,

mfg:Product1 rdf:type mfg:Product.
lit:Shakespeare rdf:type lit:Playwright.

respectively. Thus we will usually write instead:

mfg:Product1 a mfg:Product.
lit:Shakespeare a lit:Playwright.

RDF/XML

While Turtle is convenient for human consumption and is more compact for the printed page, many

Web infrastructures are accustomed to representing information in HTML or, more generally, XML.

For this reason, the W3C has recommended the use of an XML serialization of RDF called RDF/XML.

The information about Product1 and Product2 just shown looks as follows in RDF/XML. In this

example, the subjects (Product1 and Product2) are referenced using the XML attribute

rdf:about; the triples with each of these as subjects appear as subelements within these definitions.

The complete details of the RDF/XML syntax are beyond the scope of this discussion and can be found

in http://www.w3.org/TR/rdf-syntax-grammar/.

<rdf:RDF
xmlns:mfg=“http://www.WorkingOntologist.com/Examples/Chapter3/
Manufacturing#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-
ns#”>
<mfg:Product

46 CHAPTER 3 RDF—The basis of the Semantic Web

rdf:about=“http://www.WorkingOntologist.com/Examples/Chapter3/
Manufacturing#Product1”>

<mfg:Available>23</mfg:Available>
<mfg:Division>Manufacturing support</mfg:Division>
<mfg:ProductLine>Paper machine</mfg:ProductLine>
<mfg:SKU>FB3524</mfg:SKU>
<mfg:ModelNo>ZX-3</mfg:ModelNo>
<mfg:ManufactureLocation>Sacramento</mfg:Manufacture
Location>
</mfg:Product>
<mfg:Product

rdf:about=“http://www.WorkingOntologist.com/Examples/Chapter3/
Manufacturing#Product2”>

<mfg:SKU>KD5243</mfg:SKU>
<mfg:Division>Manufacturing support</mfg:Division>
<mfg:ManufactureLocation>Sacramento</mfg:Manufacture
Location>
<mfg:Available>4</mfg:Available>
<mfg:ModelNo>ZX-3P</mfg:ModelNo>
<mfg:ProductLine>Paper machine</mfg:ProductLine>
</mfg:Product>

</rdf:RDF>

The same information is contained in the RDF/XML form as in the Turtle, including the decla-

rations of the qnames for mfg: and rdf:. RDF/XML includes a number of rules for determining the

fully qualified URI of a resource mentioned in an RDF/XML document. These details are quite

involved and will not be used for the examples in this book.

BLANK NODES

So far, we have described how RDF can represent sets of triples, in which each subject, predicate, and

object is either a source or (in the case of the object of a triple) a literal data value. Each resource is

given an identity according to the Web standard for identity, the URI. RDF also allows for resources

that do not have any Web identity at all. But why would we want to represent a resource that has no

identity on the Web?

Sometimes we know that something exists, and we even know some things about it, but we don’t

know its identity. For instance, suppose we want to represent the fact that Shakespeare had a mistress,

whose identity remains unknown. But we know a few things about her; she was a woman, she lived in

England, and she was the inspiration for “Sonnet 78.”

It is simple enough to express these statements in RDF, but we need an identifier for the mistress. In

Turtle, we could express them as follows:

lit:Mistress1 rdf:type bio:Woman;
bio:LivedIn geo:England.

lit:Sonnet78 lit:hasInspiration lit:Mistress1.

Blank nodes 47

But if we don’t want to have an identifier for the mistress, how can we proceed? RDF allows for

a “blank node,” or bnode for short, for such a situation. If we were to indicate a bnode with a ?, the

triples would look as follows:

? rdf:type bio:Woman;
bio:livedIn geo:England.

lit:Sonnet78 lit:hasInspiration ?.

The use of the bnode in RDF can essentially be interpreted as a logical statement, “there exists.”

That is, in these statements we assert “there exists a woman, who lived in England, who was the

inspiration for ‘Sonnet78.’”

But this notation (which does not constitute a valid Turtle expression) has a problem: If there is

more than one blank node, how do we know which “?” references which node? For this reason, Turtle

instead includes a compact and unambiguous notation for describing blank nodes. A blank node is

indicated by putting all the triples of which it is a subject between square brackets ([and]), so:

[rdf:type bio:Woman;
bio:livedIn geo:England]

It is customary, though not required, to leave blank space after the opening bracket to indicate that

we are acting as if there were a subject for these triples, even though none is specified.

We can refer to this blank node in other triples by including the entire bracketed sequence in place

of the blank node. Furthermore, the abbreviation of “a” for rdf:type is particularly useful in this

context. Thus, our entire statement about the mistress who inspired “Sonnet 78” looks as follows in

Turtle:

lit:Sonnet78 lit:hasInspiration [a :Woman;
 bio:livedIn geo:England].

This expression of RDF can be read almost directly as plain English: that is, “Sonnet78 has [as]

inspiration a Woman [who] lived in England.” The identity of the woman is indeterminate. The use of

the bracket notation for blank nodes will become particularly important when we come to describe

OWL, the Web Ontology Language, since it makes very particular use of bnodes.

Ordered information in RDF

The children of Shakespeare appear in a certain order on the printed page, but from the point of view of

RDF, they are in no order at all; there are just three triples, one describing the relationship between

Shakespeare and each of his children. What if we do want to specify an ordering. How would we do it

in RDF?

RDF provides a facility for ordering elements in a list format. An ordered list can be expressed

quite easily in Turtle as follows:

lit:Shakespeare b:hasChild (b:Susanna b:Judith b:Hamnet).

48 CHAPTER 3 RDF—The basis of the Semantic Web

This translates into the following triples, where _:a, _:b, and _:c are bnodes:

lit:Shakespeare b:hasChild _:a.
_:a rdf:first b:Susanna.
_:a rdf:rest _:b.
_:b rdf:first b:Judith.
_:b rdf:rest _:c.
_:c rdf:rest rdf:nil.
_:c rdf:first b:Hamnet.

This rendition preserves the ordering of the objects but at a cost of considerable complexity of

representation. Fortunately, the Turtle representation is quite compact, so it is not usually necessary to

remember the details of the RDF triples behind it.

SUMMARY

RDF is, first and foremost, a system for modeling data. It gives up in compactness what it gains in

flexibility. Every relationship between any two data elements is explicitly represented, allowing for

a very simple model of merging data. There is no need to arrange the columns of tables so that they

“match up” or to worry about data “missing” from a particular column. A relationship (expressed in

a familiar form of subject/predicate/object) is either present or it is not. Merging data is thus reduced to

a simple matter of considering all such statements from all sources, together in a single place.

The only challenge that remains in such a system is the challenge of identity. How do we have

a global notation for the identity of any entity? Fortunately, this problem is not unique to the RDF data

model. The infrastructure of the Web itself has the same issue and has a standard solution: the URI.

RDF borrows this solution.

Since RDF is a Web language, a fundamental consideration is the distribution of information from

multiple sources, across the Web. On the Web, the AAA slogan holds: Anyone can say Anything about

Any topic. RDF supports this slogan by allowing any data source to refer to resources in any name-

space. Even a single triple can refer to resources in multiple namespaces.

As a data model, RDF provides a clear specification of what has to happen to merge information

from multiple sources. It does not provide algorithms or technology to implement those processes.

These technologies are the topic of the next chapter.

Fundamental concepts

The following fundamental concepts were introduced in this chapter.

RDF (Resource Description Framework)—This distributes data on the Web.

Triple—The fundamental data structure of RDF. A triple is made up of a subject, predicate, and

object.

Graph—A nodes-and-links structural view of RDF data.

Merging—The process of treating two graphs as if they were one.

URI (Uniform Resource Indicator)—A generalization of the URL (Uniform Resource Locator),

which is the global name on the Web.

Summary 49

namespace—A set of names that belongs to a single authority. Namespaces allow different agents

to use the same word in different ways.

qname—An abbreviated version of a URI, it is made up of a namespace identifier and a name,

separated by a colon.

rdf:type—The relationship between an instance and its type.

rdf:Property—The type of any property in RDF.

Reification—The practice of making a statement about another statement. It is done in RDF using

rdf:subject, rdf:predicate, and rdf:object.

N-Triples, Turtle, RDF/XML—The serialization syntaxes for RDF.

Blank nodes—RDF nodes that have no URI and thus cannot be referenced globally. They are used

to stand in for anonymous entities.

50 CHAPTER 3 RDF—The basis of the Semantic Web

