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Digital Irmagz Processing

Introduction

An image may be defined as 2D function
f(x,y), where x and y are spatial coordinates.

The amplitude of f at any pair (x,y) is called
the intensity at that point.

When x, y, and f are all finite, discrete
quantities, we call the image a digital image

So, a digital image is composed of finite nui
of elements called picture elements or pixels
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Image f(x. y)
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Introduction

« The field of image processing is related to two other fields:
Image analysis and computer vision

Image Processing Computer Vision

—
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Digital Irmagz Proczssing

Introduction

» There are three of processes in the continuum

e Low Level Processes
» Preprocessing, filtering, enhancement
» sharpening

image
image ——|  EouiESE R ——>
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Introduction

* There are three of processes in the continuum

* Low Level Processes
» Preprocessing, filtering, enhancement

» sharpening image
image —*| LowLevel | —

e Mid Level Processes

» segmentation attributes

image —>  WLEESVEEE——>
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Introduction

* There are three of processes in the continuum

* Low Level Processes
» Preprocessing, filtering, enhancement

» sharpening image
image —*| LowLevel | —

 Mid Level Processes
» segmentation

attributes
image —* MidLevel |—

e High Level Processes .
... recognition
» Recognition attributes ——> | EIGEHESE S ——s
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Digital Irmagz Proczssing

Origins of DIP

» Newspaper Industry: pictures were sent
by Bartlane cable picture between London
and New York in early 1920.

The introduction of the Bartlane Cable
reduced the transmission time from a week
to three hours

Specialized printing equipment coded pictures 1921
for transmission and then reconstructed them

at the receiving end.

Visual Quality problems
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Origins of DIP

In 1922, a technique based on photographic
reproduction made from tapes perforated at the

telegraph receiving terminal was used.

This method had better tonal quality and
Resolution

Had only five gray levels

1922
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Origins of DIP

Unretouched cable picture of Generals
Pershing and Foch transmitted

Between London and New York in 1929
Using 15-tone equipment

8/28/20
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Digiral Imagz Proc

Origins of DIP

The first picture of the moon by a US
Spacecraft.

Ranger 7 took this image
On July 31st in 1964.

This saw the first use of a digital
computer to correct for various types
of image distortions inherent in the
on-board television camera
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Digital Irmagz Processing

e X-ray Imaging

X-rays are among the oldest sources
of EM radiation used for imaging

Main usage is in medical imaging (X-
rays, CAT scans, angiography)

The figure shows some of the
applications of X-ray imaging
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Digital Irnagz Processine

Applications

 Inspection Systems

Some examples of manufactured goods

often checked using digital image
processing
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Applications

* Finger Prints T ate v,

e s
IMUNIMIE N TMOVLEAIE S .

e Counterfeiting
 License Plate
Reading
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Components of an Image Processing System

Metwork

Computer

Image displays Mass storage

Specialized
Hardcopy image processing
hardware

[mage processing
soflware

Image sensors

Problem
domain
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Steps In Digital Image Processing

Problem

dosmiain
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04

Outputs of these processes generally are images

Color image

processing

Wavelets and
it resalution
processing

Compression

Muorphological
processing

Ak L

£

Image
restoration

Image
enhancement

Image
Acguisiiion

Enowledge base

Segmentation

Representation
&z description

Outpuis of these processes generally are image atinbutes

M et
recognibion
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2. Digital Image Fundamentals
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Structure of the Human Eye

Cornea

Ciliary muscle

The eye is nearly a sphere with an
Average diameter of 20mm

Three membranes enclose the eye:
Cornea/Sclera, choroid, and retina.
Visual axis
The Cornea is a tough transparent tissue
Covering the anterior part of the eye
Sclera is an opague membrane that
Covers the rest of the eye Sclera

Choroid
The Choroid has the blood supply to the
eye

8/28/20 . i o
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Structure of the Human Eye

Continuous with the choroid is the
Iris which contracts or expands to
control the amount of light entering
the eye

The lens contains 60 to 70 % water,
6% fat, and protein.

The lens is colored slightly yellow
that increases with age

The Lens absorbs 8% of the visible
light. The lens also absorbs high
amount of infrared and ultra violet
of which excessive amounts can

Happage the eye
04

Cornea

Visnal axis

Vitreous humor

Sclera

Choroid

'y
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¥
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The Retina

The innermost membrane is the
retina

When light is properly focused,
the image of an outside object is

Imaged on the retina

There are discrete light
receptors that line the retina:

cones and rods
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Ciliary muscle

Visnal axis

Vitreous humor

Retina

Sclera

Choroid
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Rods and Cones

The cones (7 million) are

located in the central portion
the retina (fovea). They are
highly sensitive to color

No. of rods or cones per mm?

The rods are much larger (75
150 million). They are
responsible for giving a genel
overall picture of the field of
view. They are not involved in

color vision

8/28/20
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Image Formation In the Eye

o 100 m wta— 1 7 mim—e-
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Digital Irmagz Processing

Electromagnetic Spectrum

Energy of one photon (electron volts)
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Frequency (Hz)
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Wavelength (meters)
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[ N :
Hard X-rays Ultraviolet Infrared Radio waves
e = |
Gamma rays Soft X-rays Visible spectrum Microwaves

04x10° 05x10°% 06x10°% 07x10°°
Ultraviolet Violet Blue Green Yellow  Orange Red Infrared
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Digital Irmagz Processing

Image Acquisition

Hlumination (energy)

..:'/’/ L\ source

T Output (digitized) image
- Imaging system

(Internal) image plane

Scene element
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Digital Irmagz Processing

Image Sensors

Energy

) | 11|

Power in

HousingJ [\/bvw Voltage waveform out

Single Imaging Sensor

— Sensing material

Line sensor
L TRyl
[ T T I
EEEEEEEEEEnE
L]
Array of Sensors EEEEEEEEEEEE
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Digital Irmagz Processing

Image Sensors

Energy
Single Imaging Sensor l J, l l l

Filter

v

: — Sensing material
Power in

HﬂusingJ [\/’U\fw Voltage waveform out

Photo Diode

Film

Sensor
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9w Lo .
e Digiral Irmagz Proczessing

Image Sensors

Line sensor
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Image Sensors

Line sensor

v

T T T T T ......
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Image Sensors

Line sensor

v

T T T T T ......
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Image Sensors

Line sensor

v
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Image Sensors

Line sensor

v
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Digital Irmagz Processing

Image Sensors

Array of Sensors

v

CCD Camera
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Image Formation Model

) tumination (enerey)
- i SoUeY
L
P A

fXY)=1(x.y)r(x.y)

where

1) i(xy) the amount of illumination 0< i(x, y) < o0

incident to the scene

2) r(x,y) the reflectance from the objects O <r ( X, y) < 1

8/28/20 : i ..
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Image Formation Model

 For Monochrome Images : | = f(x,y)

where
» |_min<|<1 max
» | _min >0
» |_max should be finite

The Interval [I_min, | _max] is called the gray scale
In practice, the gray scale is from 0 to L-1, where L is the # of gray levels

0 > Black
L-1 > White

8/28/20 . i o
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Image Sampling and Quantization

Continuous Sampling & Discrete
Quantization '

o Sampling iIs the quantization of coordinates

« Quantization Is the quantization of gray
levels

8/28/20 . i o
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Digital Irmagz Proczssing

Image Sampling and Quantization

PN T
2N

DDDDD

A v e v |
Sampling
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Digital Irmagz Processing

Sampling and Quantization

Continuous Image projected Results of Sampling and
onto a sensor array Quantization
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Effect of Sampling

Y - EE

128

256 Images up-sampled to 1024x1024
Starting from 1024, 512,256,128,64, and 32

A 1024x1024 image is sub-sampled
to 32x32. Number of gray levels is the
same
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Digital Irnagz Processine

Effect of Quantization

An X-ray Image represented by different number
of gray levels: 256, 128, 64, 32, 16, 8, 4, and 2.
04 University of Louisville
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Representing Digital Images

Origi

N0 102 3 1
¥

0
1

The result of Sampling and Quantization is a matrix of real
Numbers. Here we have an image f(x,y) that was sampled
To produce M rows and N columns.

M-1

£(0,00 f(01)
f (1)

F(x,y)=

f(M —1,0) f(M-1,N-1)
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Representing Digital Images

e There Is no requirements about M and N
e Usually L= 2X
e Dynamic Range : [0, L-1]

The number of bits required to store an image

b=MxNxKk where k is the number of bits/pixel

Example : The size of a 1024 x 1024 8bits/pixel image is 220 bytes = 1 MBytes

8/28/20 . i o
04 University of Louisville



Image Storage

The number of bits required to store an image

b=MxNxk where k is the number of bits/pixel
;\-',fk 1(L. =2) 2L = 4) 3(L.=8) 4(L=16) 5(L=32) o6(L=064) T7T(. =128) 8(L = 256)
32 1,024 2,048 3.072 4.096 5,120 6144 7.168 8,192
64 4096 8,192 12,288 16384 20,480 24 576 28,672 32,768
128 16,384 32,768 40,152 65.536 81.920 08.304 114,688 131,072
256 635,536 131,072 196,608 262,144 327.680 393216 458,752 524,288
512 262,144 524288 786,432 1.048.576 1.310.720 1.572.864 1,835,008 2007152
1024 1,048,576 2.097.132 3,145,728 4.194 304 5.242 880 6.201.456 7.340,032 8,388,608
2048 4194304 8388608 12,582,912 16,777,216 20971520  25.165.824 20309.128 33,554,432
4006 16777216 33554432 50331648 67108864  BIE8A.080 100663296 117440512 134217728
8192 67108864 134217728 201,326,502 268435456 335544320 402653184 469,762,048 536,870,012

The number of storage bits depending on width and height (NxN), and the number
Of bits/pixel k.

8/28/20
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Digital Irmagz Proczssing

File Formats

PGM/PPM
RAW

JPEG

GIF JPEG

TIFF

PDF E“:

EPS

8/28/20 i i ..
04 University of Louisville

11k



File Formats

The TIFF File

8/28/20
04

TIFF -- or Tag Image File Format -- was developed by Aldus
Corporation in 1986, specifically for saving images from scanners,
frame grabbers, and paint/photo-retouching programs.

Today, it is probably the most versatile, reliable, and widely supported
bit-mapped format. It is capable of describing bi-level, grayscale,
palette-color, and full-color image data in several color spaces.

It includes a number of compression schemes and is not tied to specific
scanners, printers, or computer display hardware.

The TIFF format does have several variations, however, which means
that occasionally an application may have trouble opening a TIFF file
created by another application or on a different platform

University of Louisville



File Formats

The GIF File

GIF -- or Graphics Interchange Format -- files define a protocol intended for
the on-line transmission and interchange of raster graphic data in a way that is
independent of the hardware used in their creation or display.

The GIF format was developed in 1987 by CompuServe for compressing
eight-bit images that could be telecommunicated through their service and
exchanged among users.

The GIF file is defined in terms of blocks and sub-blocks which contain
relevant parameters and data used in the reproduction of a graphic. A GIF data
stream is a sequence of protocol blocks and sub-blocks representing a
collection of graphics

8/28/20 : i ..
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File Formats

The JPEG File

JPEG is a standardized image compression mechanism. The name derives from the
Joint Photographic Experts Group, the original name of the committee that wrote the
standard. In reality, JPEG is not a file format, but rather a method of data encoding used
to reduce the size of a data file. It is most commonly used within file formats such as
JFIF and TIFF.

JPEG File Interchange Format (JFIF) is a minimal file format which enables JPEG
bitstreams to be exchanged between a wide variety of platforms and applications. This
minimal format does not include any of the advanced features found in the TIFF JPEG
specification or any application specific file format.

JPEG is designed for compressing either full-color or grayscale images of natural, real-
world scenes. It works well on photographs, naturalistic artwork, and similar material,
but not so well on lettering or simple line art. It is also commonly used for on-line
display/transmission; such as on web sites.

A 24-bit image saved in JPEG format can be reduced to about one-twentieth of its

original size. _ _ o
04 University of Louisville



Neighbors of a Pixel

o A pixel p at coordinates (x,y) has 4
neighbors: (x-1,y), (x+1,y), (X,y-1), (X,y+1).
 These pixels are called N,(p) O O
0*%*0
O O

* Ng(p) are the eight immediate neighbors of
p

8/28/20 : i ..
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Adjacency and Connectivity

e Two pixels are connected If:

e They are neighbors
 Their gray levels satisfy certain conditions (e.g. :
;= 9,)

«Two pixels p, g are 4 adjacent if e N, (p)
*Two pixels p, g are 8 adjacent if qe Ng(p)

8/28/20 . i o
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Adjacency and Connectivity

e Path :

— A digital path from p to g is the set of pixel
coordinates linking p and q. O

O O
* Region: ® o

— A region Is a connected set of pixels

8/28/20 : i ..
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Distance Measures

Assume we have 3 pixels: p:(x,y), q:(s,t) and z:(v,w)

A distance function D Is a metric that satisfies the following

conditions: .
a) D(p,q)>0, D(p,q)=0 1ff p=q

b) D(p,q)=D(q, p)
c) D(p,z) <D(p,q)+D(q,z)

Example: Euclidean Distance :

D(p,q) =/ (x=35) +(y—t)?

8/28/20 . i o
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Digital Irmagz Proczssing

Distance Measures

« City Block Distance :

D,(p,q)=X—s|+]|y—t]

e Chess Board Distance

D, (P, q) = max(|x—s|,y—t])

8/28/20 i i ..
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Image Scaling

 Pixel Replication AlB Ale|B
. . ol f h
« Bilinear Interpolation - = -
I
* Bicubic Interpolation
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Image Interpolation

* Pixel Replication:

Use the nearest neighbor to construct
the zoomed image

Useful in doubling the image size

8/28/20 : i ..
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Image Interpolation

(.J) (i,v) (ij+1)
 Bilinear Interpolation
+(u,v)
Use 4 nearest neighbors to calculate the
image value.
(i+1,) (i+1v)  (i+1,+1)

f(u,v) = f(i,v)(L—(u—i))+ f@i+Lv)(u—i)

tav) =10, NA-(v=1))+ T0+1 ))v-1)
fi+Lv)=f(i, j+D)A-(v— )+ f([i+1 j+D(v— )

8/28/20 : i ..
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Image Interpolation

e Cubic Interpolation

Use 16 nearest neighbors

The contribution of each pixel depends on its distance from the output pixel
Usually we use spline curve to give smoother output.

f(u,v)=P"(v) F P(u)

where B B
p.(u)
P(u) = P-(U) O<u,v<l
ps(u)

| p,(U) |

8/28/20 . i o
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Image Interpolation

e Cubic Interpolation

figja Fisj

F= hi

fi+2,j f

p,(t) = (—t° +2t° —t) /2

p,(t)=(3t° -5t +2)/2

p,(t) = (=3t° +4t* +1)/2
- p,(t)=(t°-t*)/2

04 University of Louisville



Digiral Irmagz Proczessing

Image Interpolation

4x Bilinear Interpolation 4x Bicubic Interpolation

8/28/20 . . L
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Digital Irmagz Processing

Image Interpolation

4x BiCubic Interpolation 4x Edge Directed Interpolation

8/28/20 . . o
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Digital Irnagz Processine

Image Interpolation
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3. Image Enhancement In the
Spatial Domain
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Image Enhancement

The objective of Image Enhancement is to process
Image data so that the result is more suitable than
the original Image

Original Image : Enhancement FTrr;]aangceed
Operator

8/28/20 . i o
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Digital Irmagz Proczssing

Image Enhancement

Image Enhancement

T T

Spatial Domain

8/28/20
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Frequency Domain
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Spatial Domain Enhancement

Origin

o Letf(x,y) be the original image T (x.y)
and g(x,y) be the processed image

Then

g (X’ y) — T ( f (X’ y)) Image f(x, ¥)

where T Is an operator over a certain neighborhood of the image
centered at (X,y)

Usually, we operate on a small rectangular region around (X,y)

8/28/20 . i o
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Intensity Mapping

e The simplest form of T is when the neighborhood is 1 x 1
pixel (single pixel)
 In this case, g depends only on the gray level at (x,y)

g(x, y) =T(1(x,y))

- s=T(r
— T~

Input Gray level
Output Gray level P 4

Intensity Mapping

8/28/20 : i ..
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Intensity Mapping

Intensity mapping is used to :
a)Increase Contrast
b)Vary range of gray Levels

Light

Dark
Dark

m
Dark =—— Light Dark -=—— Light

8/28/20 : i ..
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Image Mapping

« A) Image Negative

Ss=(L-1)-r

Example. L=256

S=255-r

This operation enhances details in dark regions

8/28/20 i i ..
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Image Mapping

e B) Log Transformations

s=clog(l+r)

8/28/20
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L -1

Nepgative

nth root
LA -
= Log
E
e nth power
EJ'J L;"E —
S
]l_,..".‘]'
Identity Inverse log

0 L/4 L2 3L /4

Input gray level. r
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Image Mapping

Fourier Spectrum and Result of applying log transformation c=1

8/28/20 . i o
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e C) Power Transformation

8/28/20
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Image Mapping

S=cCr’

L -1 —
= .04
y = 0.10
JLM4 vy = 0.20
- y = 0.40
e
= y = 0.67
g_l LI."IE — =1 —
=
,_% =15
L
=25
LA ¥ = 50 .
y = 10.0
v = 25.0
0 | I L
0 Lj4 L/2 3L/M4 L—1

[nput gray level. r
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Digital Irmagz Procssirn

Gamma Correction

Image as viewed on monitor

Dot L)

L/

Gamma
correction

Image as viewed on monitor

8/28/20 i i ..
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Gamma Correction

8/28/20
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Digital Irmagz Processing

Contrast Stretching

L-1 |
('“2>5'2)
3L /4L | Contrast
stretching.
(a) Form of
T(r) - transformation

function. (b) A
low-contrast
image. (c) Result

Ouput gray level. s
[‘-u
=
I

Liar- 7] of contrast
(r1 51) stretching,

0 | l l (d) Result of

0 L/4 L2 3LM4 L-1 thresholding,

(Original image
courtesy of

Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)

Input gray level, r
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Contrast Stretching

{a) This
transformation
highlights range
[ A, B] of gray
levels and reduces
all otherstoa
constant level.
(b) This
transformation
highlights range
| A, B] but
preserves all
other levels.

(c) Animage.
(d) Result of
using the
transformation
in (a).

University of Louisville



Workshop

Using Photoshop
1. Image ->Adjustments->
perform:
a) Image negative,
b) Approx gamma=0.3, gamma=2.4,
¢) Clipping at 200

2. Use the Brightness and Contrast curves to increase
the level of brightness of the image

4. Threshold Image: Image->Adjustments->Threshold

8/28/20 . i o
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Histogram

e The Histogram of a digital image is a function :

h(rk) =Ny

where r, is the k' gray level
n, 1s the number of pixels having gray level r,

8/28/20 : i ..
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Digital Irmagz Proczssing

Histogram

o Example:

@ #of pixels

N || =] O
N || =] O

LW W NN
B~ O
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Normalized Histogram

Normally, we normalize h(r,) by

(r )_ h(r ) nk
So, we have N
L-1 L-1 nk

p(rk) Z =1

p(r,) can be sought of as the probability of a pixel to have a certain
value r,

8/28/20 . i o
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Digital Irmagz Proczssing

Normalized Histogram

o Example: n=16

0] 0] 2] 2] o
1|1 2]5 o et ot
1| 1| 3| 4 1
2 | 2] 3| 4 3
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Digital Irmagz Processing

Histogram

Diark image

..||||.|;|. b : :

Bright image

Lonvw-oontrast image

. |H | 1 Note: Images with uniformly
'.| b, - Distributed histograms have higher

- Hishmamenstimes= 1 Contrast and high dynamic range

8/28/20 ' ' i i ..
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Histogram Equalization

e Define a transformation s= T(r)

with

T(r)=| p.(w)dw

where p,(r) is the probability histogram of
Image r

8/28/20
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Histogram Equalization

* Now lets calculate p,(s)

p.(5) = pr(r)%

ds d d |
=—T(r)=— w)dw

=T dr!pm

ds

_:pr(r)

dr

University of Louisville



Histogram Equalization

S0, dr 1
ds  p, ()
Then
0,(5) = P (r) —— =
p,(r)

Which means that using the transformation T (r) = j p, (W)dw
the resulting probability is uniform independent 0
of the original image

8/28/20 : i ..
04 University of Louisville



Histogram Equalization

4

5
4

sp = T(ry) T(r)
In discrete form :
0 1
k K n.
Sk:Zpr(rj): J 1 0<k<L-1
j=0 i=o N
8/205Z20 University of Louisville



Digital Irmagz Processing

Histogram Equalization

|

=
g

Transformation Functions

8/28, . . L.
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Histogram Equalization

Number of pixels { % 10%)

0 | | |
0 64 128 192 255

Gray level

ab

FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA's Mars Global
Surveyor. (b) Histogram. (Original image courtesy of NASA.)
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Digiral Irmzg

Procassine

Histogram Equalization

255

Output gray levels

,_
-2
co
I

Z
|

—
=]
[

7.00

64 128 192
Input gray levels

Number of pixels ( X 10%)

64 128 192

Gray level

255

ab
C

FIGURE 3.21

(a) Transformation
function for
histogram
equalization.

(b) Histogram-
equalized image
(note the washed-
out appearance).
(c) Histogram

of (b).

University of Louisville




Workshop

1. Obtain the histogram equalization

curve for the following example

N || O
N~ || O

WIWIN DN

KON

Using PhotoShop

2. Calculate the Histogram: Image->Histogram

3. Perform Histogram Equalization

8/28/20 : i ..
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Local Enhancement

* Instead of calculating the histogram for the
whole image and then do histogram
equalization,

— First divide the image into blocks
— Perform histogram equalization on each block

8/28/20 . i o
04 University of Louisville



Digital Irmagz Processine

Local Histogram Equalization

abic

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram
equalization using a 7 X 7 neighborhood about each pixel.
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|_ocal Statistics

e From the local histogram we can compute the nt moment

1, (r) = Z " p(r)
where L1
m=>"r p(r)
i=0
Ho =1
# =0
L 1 /Variance
* p(r) =0’

8/28/20 :0 : i ..
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Enhancement By Local Statistics

e Assume we

want to change only dark areas

In the Image and leave light areas

unchanged

g(X,y) =+

o f(x, y) if m,<m o,<Th

\ f (x, y) otherwise

University of Louisville



Digital Irmagz Processine

Enhancement By Local Statistics
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Enhancement By Arithmetic Operations

Sl iy

J et o L

R R

(e gy

e T ok |

[TV T

AN R Ay
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abc
de f

FIGURE 3.27

(a) Original
image. (b) AND
image mask.

(¢) Result of the
AND aperation
on images (a) and
(b). (d) Original
image. (¢) OR
image mask.

(f) Result of
operation OR on
images (d) and
(e).
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Image Averaging

9% Y) = > £, (%Y

ab

cd

B R

FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b} Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (¢)—{f) Results of av-

eraging K = 8,16, 64, and 128 noisy images. (Original image courtesy of NASA.)

University of Louisville
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Spatial Filtering

 Spatial filtering Is performed by convolving
the image with a mask or a kernel

 Spatial filters include sharpening,
smoothing, edge detection, noise removal,
etc.
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Basics of Spatial Filtering

:‘[nmgum'igin

Image f{x. y)

wil.-1 a1, 00

Mask coafficients, showing
coordinate arrangement

Pixels of image
section under mask
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Basics of Spatial Filtering

* Ingeneral, linear filtering of an image f of size M x N with
filter size m x n iIs given by the expression

t‘[m.wgu.mgm

g(x,y) = Z Zw(s t)f(X+s,y+t)

s=—a =

a=(m-=1)/2, b—(n—l)/2

8/28/20 . i o
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Smoothing Spatial Filters

» The output of a smoothing spatial filter is simply the
average of the pixels contained in the neighborhood of the
filter mask.

o These filters are sometimes called averaging filters and
also lowpass filters

e By replacing the value of the pixel with the average of a
window around it, the result is a n image with reduced
sharp transitions

8/28/20 . i o
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Smoothing Spatial Filters

In general
a b
> > wis,t)f(x+s,y+t)
g(x, y) = ===
Z Zw(s t)
s=—a t=

8/28/20 . i o
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Smoothing Spatial Filters
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FIGURE 3.35 (a) Original image. of size 500 » 500 pixels. {b)—-{f) Results of smoothing

with square averaging filter masks of sizes n = 3.5,9,15, and 35, respectively. The black

squares at the top are of sizes 3, 5,9, 15,25, 35, 45, and 55 pixels, respectively; their bor-

ders are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in

increments of 2 points: the large letter at the top is 60 points. The vertical bars are 5 pix-

els wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is

25 pixels, and their borders are 15 pixels apart: their gray levels range from 0% to 100%. | . .
black in increments of 20%. The background of the image is 10% black. The noisy rec- Slty Of LOU ISVI I Ie
tangles are of size 50 = 120 pixels.



Smoothing Spatial Filters

abc

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(c) Result of thresholding (b). (Original image courtesy of NASA.)
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Order Statistics Filters

Order statistics filters are nonlinear spatial filters whose
response Is based on ordering (ranking) the pixels
contained in an area covered by the filter

The best known example in this category in median filter

Median filters replace the value of the pixel by the median
of the gray levels in the neighborhood of that pixel

8/28/20 . i o
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Median Filter

e Example

Order

8/28/20
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Digital Irnagz Processine

Median Filter

Silyirtsie

abc

FIGURE 3.37 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with a
3 % 3 averaging mask. (¢) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr. Joseph
E. Pascente, Lixi, [nc.)
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Digital Irnagz Processine

Multi Pass Median Filter

ab
cd

FIGURE 5.10

(a) Image
corrupted by salt-
and-pepper noise
with probabilities
P,=PF =101
(b) Result of one
pass with a
median filter of
size 3 X 3.

(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.
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Digital Irnagz Processine

Other Order Statistics Filters

Image+Pepper Noise Image+Salt Noise
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Digital Irmagz Processing

Other Order Statistics Filters

iy

Max Filter Min Filter
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Adaptive Median Filter

We want to preserve the detail while smoothing non impulse noise.
Vary the size of the window.
Algorithm:

Let _ _
Znin = Min graylevel in S

Zn = Max graylevel in S,

Zneq = Median graylevel in S

8/28/20 : i ..
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Adaptive Median Filter

A

ALl=7 4 = Znin

A2=17_ -7,

If AL>0AND A2<0 GotoB
Else increase window size

If window size < S Goto A

max?

Else output z,,

Bl= ny ~ Znin

B2 = ny ~ Linax

If B1>0 AND B2 <0, output z,,
Else output z,_,

University of Louisville



Digital Irnagz Processine

Adaptive Median Filter

'ii:lﬂlh

abc

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities B, = F, = 0.25. (b) Result of fil-
tering with a7 X 7 median filter. (¢) Result of adaptive median filtering with Sy, = 7.
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Sharpening Spatial Filters

The principal objective of sharpening is to highlight fine details in an image or
to to enhance details that has been blurred.

We saw before that image blurring could be accomplished by pixel averaging,
which is analogous to integration.

Sharpening could be accomplished by spatial differentiation

In this section, we will define operators for sharpening by digital
differentiation

Fundamentally, the strength of the response of the operator should be
proportional to the degree of discontinuity (presence of edges).
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Digital Differentiation

e A basic definition of the first-order derivative at one dimensional
function f(x) is the difference

of
— =)= F()

 The second order derivative

o°f _ f(x+1)—2f(x)+ f(x—1)

X2

8/28/20 : i ..
04 University of Louisville



Digital Differentiation

ab

— &

FIGURE 3.38
(a) A simple

image. (b) 1-D)
harizontal gray-
level profile along [
the center of the . '
image and A |
including the \
isolated noise "\I
poaint. \
{c) Simplified \
profile (the points \ A
are joined by \ ||
dashed lines to \ || |
simplify \ J | |
interpretation). N !
% ; I_‘-_[solarcd point J".“._’".
=5 e-w f]'\ S :
- x ¥ [ 3 r
5 4 R.J,—Rdmp £ Thin linc_\ .[a,p_\ml
1 3 1 ]
oy j “x\_ i IL\Flm segment 5
= L - | 1 B ‘\ v
o 1 Tu, I: Lxl ‘_., \l\ I|r
0 o] boale-o’ -
Image strip| 5[5 [4[3[2]1]o|o]o]e|ofo]olo[1][3]1]o]ofolo][7]7][7]7]-]~]
I L
First Derivative —1-1-1-1-10 0 6 =60 0 0 1 2 -2-10 0 0 7 0 0 0
T U O O O
Second Derivative —10 0 00 1 0 6-126 00 1 1411007700
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The Laplacian v?f

The Laplacian of an image is define as

2 2
g
oX"~ oy
o° f
v f(x+Ly)-2(f(x,y)+ f(x=1y)
o° f
Y f(x,y+1)—2(f(x,y)+ f(x,y—-1)

VA =[f(Xx+Ly)+ f(x=1y)+ f(x, y+D)+ f(x,y-D]-4f(x,Yy)
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The Laplacian v?f

0 1 0 1 I 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 -1 1 1
-1 4 = -1 8 1
0 -1 0 -1 1 1
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Sharpening Mask

9(X+Y)={

8/28/20
04

Vi —f(x+Y)
Vit + f(x+Y)

0

0
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FIGURE 3.40

{(a) Image of the
North Pole of the
moon.

{b) Laplacian-
filtered image.
{c) Laplacian
image scaled for
display purposes.
{(d) Image
enhanced by
using Eq. (3.7-3).
{Original image
courtesy of
NASA )

sville
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Digiral Imagz Proc

Sharpening Spatial Filters

(=t
a0

FIGURE 3.41 (a) Composite Laplacian mask. (b} A second composite mask. (c) Scanning
electron microscope image. (d) and (e) Results of filtering with the masks in (a) and (b),

respectively. Note how much sharper (e) is than (d). (Original image courtesy of Mr. Michael of Louisville
Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)



Unsharp Masking

o A process used for many years in the publishing industry
to sharpen images.

[t consists of subtracting a blurred version of the image
from the image itself

£ y) = f(xy)-f(xy)
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High Boost Filters

A slight generalization of unsharp masking is
called high boost filters

fo (6 Y) = A F(xy)— f(xY)
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Digital Irmagz Processing

High Boost Filters

ab
cd

FIGURE 3.43

{a) Same as

Fig. 3.41(c), but
darker.

{a) Laplacian of
{a) computed with
the mask in

Fig. 3.42(b) using
A=0.

(c) Laplacian
enhanced image
using the mask in
Fig. 3.42(b) with
A = 1.(d) Same
as (c), but using
A=17

81200 o . .
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Edge Detection

a
b ¢
de

FIGURE 3.44

A3 X 3region of
an image (the z's
are gray-level
values) and masks
used to compute
the gradient at
point labeled zs.
All masks

-
41 L2 43
- - -

44 o5 Afy
i) Iz Ig

coefficients sum —1 1] 0 —1
Lo zero, as
expected of a
derivative
operator. v 1 ! 0
-1 -2 -1 -1 0
0 0 0 -2 0 2
1 2 1 -1 0
04
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Edge Detection

pPr_— "

8/28/20

ab

FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o'clock).

(b) Sobel
eradient.
(Original image
courtesy of

Mr. Pete Sites,
Perceptics
Corporation.)
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Anisotropic Diffusion Filter

The idea is to filter within the object not across boundaries

Therefore, image details remain unblurred while achieving
Smoothness within objects

The filtering i1s modeled as a diffusion process that stops at image
boundaries
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Anisotropic Diffusion Filter

of g,t) = div(c(X).Vf (X,1))

IRICENE
c(X)=e e
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Thank You
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