
1 | P a g e  
 

MCS-003 Unit III 

3 Unit 3 - Real Time Software Design 
3.1 WHAT IS REAL TIME? 

Real time is a quantitative notion of time and is measured using a physical (real) clock. 

Whenever we quantify time using a physical clock, we deal with real time. An example 

use of this quantitative notion of time can be observed in a description of an automated 

chemical plant. Consider this: When the temperature of the chemical reaction chamber 

attains a certain predetermined temperature, say 250ºC, the system automatically 

switches off the heater within a pre-determined time interval, say within 30 mSec. In 

this description of a part of the behaviour of a chemical plant, the time value that was 

referred to denotes the readings of some physical clock present in the plant automation 
system. 

In contrast to real time, logical time (also known as virtual time) deals with a 

qualitative notion of time and is expressed using event ordering relations such as before, 

after, sometimes, eventually, precedes, succeeds, etc. While dealing with logical time, 

time readings from a physical clock are not necessary for ordering the events. As an 

example, consider the following part of the behaviour of a library automation software 

used to automate the bookkeeping activities of a college library: "After a query 

bookcommand is given by the user, details of all matching books are displayed by the 

software." In this example, the events "issue of query book command" and "display of 

results" are logically ordered in terms of which events follow the other. But, no 

quantitative expression of time was required. Clearly, this example behaviour is devoid 

of any real-time considerations. We are now in a position to define what is a real-time 
system: 

A system is called a real-time system, when we need quantitative expression of time 
(i.e., real time) to describe the behaviour of the system. 

Remember that in this definition of a real-time system, it is implicit that all quantitative 

time measurements are carried out using a physical clock. A chemical plant, whose part 

behaviour description is—when temperature of the reaction chamber attains certain 

predetermined temperature value, say 250ºC, the system automatically switches off the 

heater within say 30 mSec—is clearly a real-time system. It should, however, be 

remembered that both the computer system and the controlled system (environment) 

use the same time scale. So far our examples were restricted to the description of partial 

behaviour of systems. The complete behaviour of a system can be described by listing its 

response to various external stimuli. It may be noted that all the clauses in the 

description of the behaviour of a real-time system need not involve quantitative 

measures of time. That is, large parts of a description of the behaviour of a system may 

not have any quantitative expressions of time at all, and still qualify as a real-time 

system. Any system whose behaviour can completely be described without using any 

quantitative expression of time is not a real-time system. 

 

DEFINITION 

3.2 real-time operating system (RTOS) 

A real-time operating system (RTOS) is an operating system that guarantees a certain capability 

within a specified time constraint. For example, an operating system might be designed to ensure 
that a certain object was available for a robot on an assembly line. In what is usually called a 
"hard" real-time operating system, if the calculation could not be performed for making the object 
available at the designated time, the operating system would terminate with a failure. In a "soft" 

real-time operating system, the assembly line would continue to function but the production 
output might be lower as objects failed to appear at their designated time, causing the robot to be 
temporarily unproductive. Some real-time operating systems are created for a special application 

http://searchcio-midmarket.techtarget.com/definition/operating-system


2 | P a g e  
 

and others are more general purpose. Some existing general purpose operating systems claim to 
be a real-time operating systems. To some extent, almost any general purpose operating system 
such as Microsoft's Windows 2000 or IBM's OS/390 can be evaluated for its real-time operating 
system qualities. That is, even if an operating system doesn't qualify, it may have characteristics 
that enable it to be considered as a solution to a particular real-time application problem. 

In general, real-time operating systems are said to require: 

 Multitasking 

 Process threads that can be prioritized 

 A sufficient number of interrupt levels 

Real-time operating systems are often required in small embedded operating systems that are 

packaged as part of microdevices. Some kernels can be considered to meet the requirements of a 

real-time operating system. However, since other components, such as device drivers, are also 

usually needed for a particular solution, a real-time operating system is usually larger than just the 

kernel. 

Real-time computing 

In computer science, real-time computing (RTC), or reactive computing, is the study 

of hardware and software systems that are subject to a "real-time constraint"— e.g. operational deadlines from 

event to system response. Real-time programs must guarantee response within strict time constraints, often 

referred to as "deadlines".
[1]

 Real-time responses are often understood to be in the order of milliseconds, and 

sometimes microseconds. Conversely, a system without real-time facilities, cannot guarantee a response within 

any timeframe (regardless of actual or expected response times). 

The use of this word should not be confused with the two other legitimate uses of 'real-time'. In the domain of 

simulations, the term means that the simulation's clock runs as fast as a real clock. In the processing and 

enterprise systems domains, the term is used to mean 'without perceivable delay'. 

Real-time software may use one or more of the following: synchronous programming languages, real-time 

operating systems, and real-time networks, each of which provide essential frameworks on which to build a real-

time software application. 

A real-time system may be one where its application can be considered (within context) to be mission critical. 

The anti-lock brakes on a car are a simple example of a real-time computing system — the real-time constraint in 

this system is the time in which the brakes must be released to prevent the wheel from locking. Real-time 

computations can be said to have failed if they are not completed before their deadline, where their deadline is 

relative to an event. A real-time deadline must be met, regardless of system load. 

 

Real-time systems, as well as their deadlines, are classified by the consequence of missing a deadline. 

Hard 

Missing a deadline is a total system failure. 

Firm 

Infrequent deadline misses are tolerable, but may degrade the system's quality of service. The usefulness of a 

result is zero after its deadline. 

Soft 

The usefulness of a result degrades after its deadline, thereby degrading the system's quality of service. 

Thus, the goal of a hard real-time system is to ensure that all deadlines are met, but for soft real-time 

systems the goal becomes meeting a certain subset of deadlines in order to optimize some application specific 

criteria. The particular criteria optimized depends on the application, but some typical examples include 

maximizing the number of deadlines met, minimizing the lateness of tasks and maximizing the number of high 

priority tasks meeting their deadlines. 

http://searchenterprisedesktop.techtarget.com/definition/Windows-2000
http://searchdatacenter.techtarget.com/definition/OS-390
http://searchcio-midmarket.techtarget.com/definition/multitasking
http://searchcio-midmarket.techtarget.com/definition/thread
http://whatis.techtarget.com/definition/interrupt
http://searchenterpriselinux.techtarget.com/definition/kernel
http://searchenterprisedesktop.techtarget.com/definition/device-driver
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_hardware
http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Real-time_computing#cite_note-Ben-Ari-pg164-1
http://en.wikipedia.org/wiki/Synchronous_programming_language
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Mission_critical
http://en.wikipedia.org/wiki/Anti-lock_brakes
http://en.wikipedia.org/wiki/Load_(computing)


3 | P a g e  
 

Hard real-time systems are used when it is imperative that an event be reacted to within a strict deadline. Such 

strong guarantees are required of systems for which not reacting in a certain interval of time would cause great 

loss in some manner, especially damaging the surroundings physically or threatening human lives (although the 

strict definition is simply that missing the deadline constitutes failure of the system). For example, 

a car engine control system is a hard real-time system because a delayed signal may cause engine failure or 

damage. Other examples of hard real-time embedded systems include medical systems such as 

heart pacemakers and industrial process controllers. Hard real-time systems are typically found interacting at a 

low level with physical hardware, in embedded systems. Early video game systems such as the Atari 

2600 and Cinematronics vector graphics had hard real-time requirements because of the nature of the graphics 

and timing hardware. 

In the context of multitasking systems the scheduling policy is normally priority driven (pre-emptive schedulers). 

Other scheduling algorithms include Earliest Deadline First, which, ignoring the overhead of context switching, is 

sufficient for system loads of less than 100%.
[2]

 New overlay scheduling systems, such as an Adaptive Partition 

Scheduler assist in managing large systems with a mixture of hard real-time and non real-time applications. 

Soft real-time systems are typically used where there is some issue of concurrent access and the need to keep a 

number of connected systems up to date with changing situations; for example software that maintains and 

updates the flight plans for commercial airliners. The flight plans must be kept reasonably current but can operate 

to a latency of seconds. Live audio-video systems are also usually soft real-time; violation of constraints results in 

degraded quality, but the system can continue to operate. 

3.3 A BASIC MODEL OF A REAL-TIME SYSTEM 

We have already pointed out that this book confines itself to the software issues in real-time 

systems. However, in order to be able to see the software issues in a proper perspective, we need 
to have a basic conceptual understanding of the underlying hardware. Therefore, in this section we 
try to develop a broad understanding of the high-level issues of the underlying hardware in a real-

time system. For a more detailed study of the underlying hardware issues, we refer the reader to 
[8]. Figure 1.3 shows a simple model of a real-time system in terms of its important functional 
blocks. Unless otherwise mentioned, all our subsequent discussions would implicitly assume such a 
model. Observe that in Fig. 1.3, the sensors are interfaced with the input conditioning block, 

which, in turn, is connected to the input interface. The output interface, output conditioning, and 
the actuator are interfaced in a complementary manner. In the following, we briefly describe the 
roles of the different functional blocks of a real-time system: 

 
Sensor. A sensor converts some physical characteristic of its environment into electrical signals. An 

example of a sensor is a photo-voltaic cell which converts light energy into electrical energy. A 
wide variety of temperature and pressure sensors are also used. Typically, a temperature sensor 

operates on the principle of a thermocouple. Temperature sensors based on many other physical 
principles also exist. For example, one type of temperature sensor employs the principle of 
variation of electrical resistance with temperature (called a varistor). A pressure sensor typically 
operates on the piezoelectricity principle. Pressure sensors based on other physical principles also 
exist. 

http://en.wikipedia.org/wiki/Automobile
http://en.wikipedia.org/wiki/Internal_combustion_engine
http://en.wikipedia.org/wiki/Artificial_pacemaker
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Atari_2600
http://en.wikipedia.org/wiki/Atari_2600
http://en.wikipedia.org/wiki/Atari_2600
http://en.wikipedia.org/wiki/Cinematronics
http://en.wikipedia.org/wiki/Computer_multitasking
http://en.wikipedia.org/wiki/Preemptive_multitasking
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Real-time_computing#cite_note-2
http://en.wikipedia.org/wiki/Adaptive_Partition_Scheduler
http://en.wikipedia.org/wiki/Adaptive_Partition_Scheduler
http://en.wikipedia.org/wiki/Adaptive_Partition_Scheduler
http://en.wikipedia.org/wiki/Airline
javascript:moveTo('figure_1.3');
javascript:moveTo('figure_1.3');


4 | P a g e  
 

Actuator. An actuator is any device that takes its inputs from the output interface of a computer 
and converts these electrical signals into some physical actions on its environment. The physical 
actions may be in the form of motion, change of thermal, electrical, pneumatic, or physical 
characteristics of some objects. A popular actuator is a motor. Heaters are also very commonly 
used. Besides, several hydraulic and pneumatic actuators are also popular. 

Signal Conditioning Units. The electrical signals produced by a computer can rarely be used to 

directly drive an actuator. The computer signals usually need conditioning before they can be used 
by the actuator. This is termed output conditioning. Similarly, input conditioning is required to be 
carried out on sensor signals before they can be accepted by the computer. For example, analog 
signals generated by a photo-voltaic cell are normally in the millivolts range and need to be 
conditioned before they can be processed by a computer. The following are some important types 
of conditioning carried out on raw signals generated by sensors and digital signals generated by 
computers: 

1. Voltage Amplification: Voltage amplification is normally required to be carried out to 
match the full-scale sensor voltage output with the full-scale voltage input to the interface 

of a computer. For example, a sensor might produce voltage in the millivolts range, 
whereas the input interface of a computer may require the input signal level to be of the 
order of a volt. 

2. Voltage Level Shifting: Voltage level shifting is often required to align the voltage level 
generated by a sensor with that acceptable to the computer. For example, a sensor may 
produce voltage in the range −0.5 to +0.5 volt, whereas the input interface of the 
computer may accept voltage only in the range of 0 to 1 volt. In this case, the sensor 
voltage must undergo level shifting before it can be used by the computer. 

3. Frequency Range Shifting and Filtering: Frequency range shifting is often used to 
reduce the noise components in a signal. Various types of noise occur in narrow bands and 
the signal must be shifted from the noise bands so that noise can be filtered out. 

4. Signal Mode Conversion: A type of signal mode conversion that is frequently carried out 
during signal conditioning involves changing direct current into alternating current and vice 

versa. Another type of signal mode conversion frequently used is conversion of analog 
signals to a constant amplitude pulse train such that the pulse rate or pulse width is 
proportional to the voltage level. Conversion of analog signals to a pulse train is often 
necessary for input to systems such as transformer coupled circuits that do not pass 
direct current. 

Interface Unit. Normally, commands from the CPU are delivered to the actuator through an output 
interface. An output interface converts the stored voltage into analog form and then outputs this to 
the actuator circuitry. This would require the value generated to be written on a register (see Fig. 
1.4). In order to produce an analog output, in an output interface, the CPU selects a data register 

of the output interface and writes the necessary data to it. The two main functional blocks of an 
output interface are shown in Fig. 1.4. The interface takes care of the buffering and the 
handshake control aspects. Analog to digital conversion is frequently deployed in an input 
interface. Similarly, digital to analog conversion is frequently used in an output interface. 

 
In the following, we discuss the important steps of Analog to Digital Signal Conversion (ADC). 

Analog to Digital Conversion. Digital computers can not process analog signals. Therefore, analog 
signals need to be converted to digital form using a circuitry whose block diagram is shown in Fig. 

javascript:moveTo('figure_1.4');
javascript:moveTo('figure_1.4');
javascript:moveTo('figure_1.4');
javascript:moveTo('figure_1.4');
javascript:moveTo('figure_1.7');
javascript:moveTo('figure_1.7');


5 | P a g e  
 

1.7. Using that block diagram, analog signals are normally converted to digital form through the 
following two main steps: 

 Sample the analog signal (shown in Fig. 1.5) at regular intervals. This sampling can be 
done by a capacitor circuitry that stores the voltage levels. The stored voltage level can be 

discretized. After sampling the analog signal (shown in Fig. 1.5), a step waveform as 
shown in Fig. 1.6 is obtained. 

 Convert the stored value to a binary number by using an ADC as shown in Fig. 1.7, and 
store the digital value in a register. 

Digital to analog conversion can be carried out through a complementary set of operations. We 
leave it as an exercise to the reader to figure out the details of the circuitry that can perform the 
Digital to Analog Conversion (DAC). 

  

 
 

3.4 Real-Time Simulation 
On this page… 

What Is Real-Time Simulation? 

Requirements for Real-Time Simulation 

Simulating Physical Models in Real Time 

Preparing a Model for Real-Time Simulation 

Troubleshooting Real-Time Simulation Problems 

What Is Real-Time Simulation? 

Real-time simulation of an engineering system becomes possible when you replace physical 
devices with virtual devices. This replacement reduces costs and improves the quality of 
physical and control systems, including their software, by enabling more complete testing of 
the entire system. It also enables continuous testing, without interruption and under possibly 
dangerous conditions. Real-time simulation allows you to test even when you have no 
prototypes. 

javascript:moveTo('figure_1.5');
javascript:moveTo('figure_1.5');
javascript:moveTo('figure_1.6');
javascript:moveTo('figure_1.7');
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a8q
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsjgzgd
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9c-1
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9e-1
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9f-1


6 | P a g e  
 

Real-time simulation becomes a necessity if you want to simulate a system realistically 
responding to its environment. Such realistic simulation means that the inputs and outputs in 
the virtual world of simulation must be read or updated synchronously with the real world. 
When the simulation clock reaches a certain time in real-time simulation, the same amount 
of time must have passed in the real world. 

Using Real-Time Simulation to Test Virtual Controllers and Systems 
In desktop simulation, you use models to develop and test control and signal processing 
algorithms. Once the designs are complete and you have converted these algorithms to 
embedded code, you must test that code as well as the actual controller. If the model is 
capable of running in real time, you can use the model created in the design phase to test 
the embedded code and processor, instead of connecting it directly to a hardware prototype. 
Such real-to-virtual substitution, simulating in real time, is referred to as hardware-in-the-
loop (HIL) testing. 
Example 
Systems with a human in the simulation loop require real-time simulation. For example, flight 
simulators that train pilots require real-time simulation of the plane, its control system, the 
weather, and other environmental conditions. 

Requirements for Real-Time Simulation 

Configuring a model and a numerical integrator to simulate in real time is often more 
challenging than ordinary simulation. You simulate with a more restrictive version of the 
universal computational tradeoff of accuracy versus speed. 

The simulation execution time per time step must be consistently short enough to permit any 
other tasks that the simulation environment must perform, such as reading sensor input or 
generating output actuator signals. This requirement must be satisfied even if the simulation 
changes its qualitative character: the system stiffness might change, and discrete 
components can switch states. Such changes occasionally require more computations to 
achieve an accurate result. 

Bounding and Stabilizing Execution Time with Fixed-Step Solvers and Fixed-Cost 
Simulation 
When real-time simulation is the goal, the execution time per simulation time step must be 
bounded. Variable-step solvers, which are often used in desktop simulation, take smaller 
steps to accurately capture events that occur during the simulation. But you cannot vary the 
step size in a real-time simulation. Instead, you must 

 Choose a fixed-step solver that can capture the system dynamics accurately and minimize 
the amount of computation required per time step, without changing the step size. If the 
system states are all discrete, the fixed-step solver can be discrete as well. 

If you choose a small enough step size, most fixed-step solvers produce the same 
simulation results as a variable-step solver. However, different fixed-step solvers 
(implicit/explicit, lower/higher order, and so on) require different step sizes to produce 
accurate results. They also require different amounts of computation per time step. 

 Choose a fixed step size large enough to permit stable real-time simulation. The step size 
must not be so large that the simulation results are inaccurate, but not so small that real-time 
simulation is impossible. 

You often need trial and error to find the right combination of settings that satisfy both 
criteria. 

Real-time simulation requires not only bounding the execution time, but fixing it to a stable 
value. This requires a fixed-cost simulation method. For more information, see Customizing 
Solvers for Physical Models. 
Simulating Physical Models in Real Time 

Achieving real-time simulation with any Simscape™ model includes: 

 Enabling simulation with fixed-step, fixed-cost solvers 

http://www.mathworks.in/help/physmod/simscape/ug/customizing-solvers-for-physical-models.html
http://www.mathworks.in/help/physmod/simscape/ug/customizing-solvers-for-physical-models.html
http://www.mathworks.in/help/physmod/simscape/ug/customizing-solvers-for-physical-models.html


7 | P a g e  
 

 Converting the model with Simulink® Coder™ to code for a particular computer hardware 
target 

 Testing real-time simulation on PC-compatible hardware with xPC Target™, if desired 
For more information, see Code Generation. 
Preparation for real-time simulation requires particular choices and adjustment of Simulink 
variable-step solvers. Actual real-time simulation requires Simulink fixed-step solvers. 
Certain Simscape features enable and enhance real-time simulation of physical systems 
with Simulink fixed-step solvers, both explicit and implicit. These features include fixed-cost 
algorithms and local solvers, with the trapezoidal rule or backward Euler method. 
See Customizing Solvers for Physical Models. 
This figure plots the normalized computational cost of all fixed-step solvers available for 
Simscape models, obtained for a nonlinear model example with one physical network. For 
comparison, the step size was kept the same, with similar settings for the total number of 
solver iterations. 

 

Preparing a Model for Real-Time Simulation 

To move from desktop to real-time simulation on your real-time hardware target, adjust the 
following simulation properties until the simulation can execute in real time and deliver 
results close to the results from desktop simulation: 

 Solver choice 

 Number of solver iterations 

 Simulation time step size 

 Model size and fidelity 

Follow these high-level tasks to prepare a model for real-time simulation. Each task is also a 
link to specific instructions for that part of the procedure. 

1. Simulate and Converge with Variable-Step Solver 
2. Check Variable Time Steps for Optimal Step Size 
3. Simulate with Fixed-Cost Solver and Compare to Variable-Step Simulation 
4. Adjust Step Size and Iterations to Approximate Variable-Step Simulation Results 
5. Attempt to Simulate in Real Time 
6. Respond to Real-Time Simulation Failures 
Simulate and Converge with Variable-Step Solver 
The first task is to obtain a converged set of results with a variable-step solver. 

To ensure that the results obtained with the fixed-step solver are accurate, you need a set of 
reference results. You can obtain these by simulating the system with a variable-step solver. 

http://www.mathworks.com/products/simulink-coder
http://www.mathworks.com/products/xpctarget/
http://www.mathworks.in/help/physmod/simscape/ug/code-generation-.html
http://www.mathworks.in/help/physmod/simscape/ug/customizing-solvers-for-physical-models.html
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsislq9
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsislrc
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsislrf
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsislrh
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsislrl
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsislrm


8 | P a g e  
 

Ensure that the results converge by tightening the error tolerances until the simulation 
results do not change significantly. 

Check Variable Time Steps for Optimal Step Size 
The second task is to examine the time step sizes during the desktop simulation and 
determine if the model is likely to run with a large enough step size to permit real-time 
simulation. 

A variable-step solver varies the step size to keep the solution within error tolerances and to 
react to zero crossing events. If the solver abruptly reduces the step size to a small value 

(for example, 1e-15 s), the solver is trying to accurately identify a zero crossing event. A 

fixed-step solver might have trouble capturing these events at a step size large enough to 
permit real-time simulation. 
Analysis of these particular variable time steps provides an estimate of a step size that can 
be used to run the simulation. Modifying or eliminating the effects are causing these events 
makes it easier to simulate the system with a fixed-step solver at a reasonably large step 
size and produce results comparable to the variable-step simulation. See Troubleshooting 
Real-Time Simulation Problems. 
Simulate with Fixed-Cost Solver and Compare to Variable-Step Simulation 
The third task is to simulate the system with a fixed-step, fixed-cost solver and compare 
these results to the reference results from the variable-step simulation. 

Limiting Per-Step Solver Iterations.  Simulating physical systems often requires multiple 
iterations per time step to converge on a solution. To perform a fixed-cost simulation, you 
must limit these iterations. In each physical network Solver Configuration block, select 
theUse fixed-cost runtime consistency iterations check box and enter the number of 
allowed iterations. 
Switching to Local Solvers.  You can further minimize the computations done per time 
step by choosing a local solver on each physical network in the model. To switch to a local 
solver in a physical network, open the Solver Configuration block of that network and 
select Use local solver. By using this option, you can use an implicit fixed-step solver only 
on the stiff portions of the model and an explicit fixed-step solver on the remainder of the 
model. This minimizes the computations done per time step, making it more likely that the 
model can run in real time. 
Adjust Step Size and Iterations to Approximate Variable-Step Simulation Results 
The fourth task is to reduce the step size and adjust the number of nonlinear iterations, in 
order to produce results that are sufficiently close to the reference results from variable-step 
simulation. The step size must still be large enough for a safety margin to prevent an 
execution overrun. 

During each time step, the real-time simulation must calculate the result for the next time 
step (simulation execution), and read inputs and write outputs (I/O processing and other 
tasks). If these actions take less time than the specified time step, the processor remains 
idle during the remainder of the step. Choosing a computationally more intensive solver, 
increasing the number of nonlinear iterations, or reducing the step size both increases the 
simulation accuracy and reduces the amount of idle time, raising the risk that the simulation 
cannot run in real time. Adjusting these settings in the opposite way increases the amount of 
idle time but reduce accuracy. 

Estimating the budget for the execution time helps ensure that you choose a feasible 
combination of settings. If you know the amount of time spent processing inputs and outputs 
and performing other actions, as well as the percentage of idle time that you want, the 
amount of time available for simulation execution can be calculated as follows: 

Simulation Execution Time Budget = 

         Step Size – [I/O Processing Time + (Desired Percentage of Idle Time)·(Step Size)] 

http://www.mathworks.in/help/simulink/ug/simulating-dynamic-systems.html#f7-9506
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9f-1
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9f-1
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9f-1
http://www.mathworks.in/help/physmod/simscape/ref/solverconfiguration.html


9 | P a g e  
 

Estimating Real-Time Execution Time.  You can use the desktop simulation speed to 
estimate the execution time on a real-time hardware target. Many factors affect the real-time 
target execution time, so that comparing processor speeds might not be sufficient. 
A better method is to measure the execution time of desktop simulation and then to 
determine the average execution time per time step on the real-time target for a particular 
model. Knowing how these execution times compare for one model means that you can 
estimate execution time on the real-time target from the desktop simulation execution time 
when you test other models. 

Attempt to Simulate in Real Time 
The fifth task is to use the selected solver, the number of nonlinear iterations, and the step 
size to simulate on the real-time target and to verify if the simulation can run in real time. 

If the simulation does not run in real time on the target hardware, the model might not be 
real-time capable. 

Respond to Real-Time Simulation Failures 
If the simulation does not run in real time on the selected real-time target, perform a sixth, 
contingent task, described in Troubleshooting Real-Time Simulation Problems. 

 
Troubleshooting Real-Time Simulation 
Problems 
If the simulation does not run in real time on the real-time platform, or if the simulation 
performance is unacceptable, you should determine the causes and find an appropriate 
solution. The combination of effects captured in the model and the speed of the real-time 
platform might make it impossible to find solver settings that permit it to run in real time. 
Consider the following options to make it real-time capable. 

Once you modify your model, return to the third, fourth, and fifth tasks of Preparing a Model 
for Real-Time Simulation to identify and implement the appropriate settings to enable real-
time simulation. 
Speeding Up Real-Time Execution 
You can speed up the real-time simulation by using a faster real-time target computer. 

Alternatively, you can achieve the same goal by determining new model settings that permit 
a larger step size or reduce the execution time (for example, by reducing the number of 
nonlinear iterations). 

Simulating Parts of the System in Parallel 
If possible, configure the model to evaluate multiple physical networks in parallel. You can 
do this if the networks are not dependent upon one another. You need experience and 
experimentation with your model, the generated code, and the real-time target to make 
effective use of this option. 

Eliminating Effects That Require Intensive Computation 
Certain effects in your model can prevent real-time simulation. Such effects include 
instantaneous events and rapid changes in parts of the system with very small time 
constants. Identify and modify or remove these elements before searching again for a 
combination of solver settings and step size that permits real-time simulation. 

Identifying Elements Causing Rapid or Instantaneous Changes.  Watch for certain 
system elements becoming excited to high frequencies. Examine the system eigenmodes to 
isolate which system states have the highest frequency. Mapping those states to individual 
components often points to the source of the problem. Because you can only do this at a 
particular operating point, choose an operating point corresponding to simulation times in the 

http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9f-1
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9e-1
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9e-1
http://www.mathworks.in/help/physmod/simscape/ug/real-time-simulation.html#bsh7a9e-1


10 | P a g e  
 

variable-step simulation that had small step sizes. At such simulation times, the variable-step 
solver is struggling to simulate a rapid change. 
With scripts written in MATLAB®, you can interrogate the model, identify these components 
quickly, and narrow the search for the effects that you need to modify. You can automate 
and extend these searches to other models with tools like the Simulink Model Advisor. The 
troublesome components that you need to locate include: 

 Elements that create events and change the solution nearly instantaneously. A fixed-step 
solver might not be able to step over such rapid changes and find the right solution on the 
other side of the event. If it fails to find the solution, the solver may become unstable. 
Examples of elements that create these kinds of events include: 

o Hard stops or backlash 

o Stick-slip friction 

o Switches or clutches 

 Elements with very small time constants. The dynamics of these elements require a small 
step size so that a fixed-step solver can accurately simulate them, perhaps too small for real-
time simulation. Examples of systems with a small time constant include: 

o Small masses attached to stiff springs with minimal damping 

o Electrical circuits with small capacitance and inductance and low resistance 

o Hydraulic circuits with small compressible volumes 

Modifying or Removing Elements Causing Rapid or Instantaneous Changes.  Once 
you have identified these elements, change or eliminate them by: 

 Replacing nonlinear components with linearized versions 

 Replacing complex equations with lookup tables for their solution 

 Replacing complicated components with simplified models by using system 
identification theory on their input and output data 

 Smoothing discontinuous functions (step changes) by using filters, delays, and other 
techniques. 

http://www.mathworks.in/help/simulink/ug/consulting-the-model-advisor.html


11 | P a g e  
 

 



12 | P a g e  
 

 
  



13 | P a g e  
 

 
3.5 Real –time programming  

3.5.1 Basic concepts 
 

 Hard-real time systems may have to programmed in assembly language 
to 

ensure that deadlines are met.  

 Languages such as C allow efficient programs to be written but do not 
have 

constructs to support concurrency or shared resource management.  
Java as a real-time language 

 Java supports lightweight concurrency (threads and synchronized 
methods) and can be used for some soft real-time systems. 

 Java 2.0 is not suitable for hard RT programming but real-time 
versions of Java are now available that address problems such as 

o Not possible to specify thread execution time; 
o Different timing in different virtual machines; 
o Uncontrollable garbage collection; 
o Not possible to discover queue sizes for shared 
o resources; 
o Not possible to access system hardware; 
o Not possible to do space or timing analysis 

 
3.6 System design 

● Design both the hardware and the software associated with system. 
Partition functions to either hardware or software. 
● Design decisions should be made on the basis on non-functional 
system 
requirements. 
● Hardware delivers better performance but potentially longer 
development and less scope for change. 
● Identify the stimuli to be processed and the required responses to 
these stimuli. 
● For each stimulus and response, identify the timing constraints. 
● Aggregate the stimulus and response processing into concurrent 
processes. A 
process may be associated with each class of stimulus and response. 
● Design algorithms to process each class of stimulus and response. 
These must meet the given timing requirements. 



14 | P a g e  
 

● Design a scheduling system which will ensure that processes are 
started in time to meet their deadlines. 
● Integrate using a real-time operating system. 

3.7 Timing constraints 
 
● May require extensive simulation and experiment to ensure that these are 
met by the system. 
● May mean that certain design strategies such as object-oriented design 
cannot be used because of the additional overhead involved. 
● May mean that low-level programming language features have to be used 
for performance reasons. 


	Unit 3 - Real Time Software Design
	WHAT IS REAL TIME?
	real-time operating system (RTOS)
	A BASIC MODEL OF A REAL-TIME SYSTEM
	Real-Time Simulation
	What Is Real-Time Simulation?
	Using Real-Time Simulation to Test Virtual Controllers and Systems
	Example

	Requirements for Real-Time Simulation
	Bounding and Stabilizing Execution Time with Fixed-Step Solvers and Fixed-Cost Simulation

	Simulating Physical Models in Real Time
	Preparing a Model for Real-Time Simulation
	Simulate and Converge with Variable-Step Solver
	Check Variable Time Steps for Optimal Step Size
	Simulate with Fixed-Cost Solver and Compare to Variable-Step Simulation
	Adjust Step Size and Iterations to Approximate Variable-Step Simulation Results
	Attempt to Simulate in Real Time
	Respond to Real-Time Simulation Failures

	Troubleshooting Real-Time Simulation Problems
	Speeding Up Real-Time Execution
	Simulating Parts of the System in Parallel
	Eliminating Effects That Require Intensive Computation


	Real –time programming
	Basic concepts

	System design
	Timing constraints


