
ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 1 of 69

Unit IV Contents
1 Principles or object oriented programming .. 3

1.1 The Object-Oriented Approach ... 3

1.2 Characteristics of Object-Oriented Languages ... 3

2 C++ Getting Started ... 6

2.1 Basic Program Construction .. 6

2.2 C++ Language Fundamentals: Tokens, Expressions, Classes .. 7

2.2.1 Tokens ... 7

2.2.2 Expressions .. 7

2.2.3 Classes ... 12

2.3 Functions, Constructors, Destructors ... 15

2.3.1 Functions ... 15

2.4 The main() function ... 27

2.5 When a program begins running, the system calls the function main, which marks the entry point of the

program. By default, main has the storage class extern. Every program must have one function named main

 27

2.6 Constructors .. 27

2.6.1 Declaring a constructor ... 27

2.7 When copies of objects are made .. 28

2.8 Copy constructor syntax ... 29

2.8.1 Destructors .. 30

2.8.2 Functions overloading ... 32

2.8.3 Overloading operators .. 32

2.9 Pointers ... 35

2.9.1 Reference operator (&) ... 35

2.9.2 Dereference operator (*) .. 36

2.9.3 Declaring variables of pointer types ... 37

2.9.4 Pointers and arrays ... 39

2.9.5 Pointer initialization .. 40

2.9.6 Pointer arithmetics ... 41

2.9.7 Pointers to pointers .. 43

2.9.8 void pointers ... 43

ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 2 of 69

2.9.9 Null pointer ... 44

2.9.10 Pointers to functions ... 44

2.10 Virtual Functions ... 45

2.10.1 Inheritance between classes ... 47

2.11 Polymorphism ... 49

2.12 Working with files ... 52

2.13 Templates .. 56

2.13.1 Class templates ... 57

2.13.2 Function templates ... 60

2.14 Exception handling .. 61

2.15 string manipulation ... 62

2.16 Translating object oriented design into implementations ... 66

ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 3 of 69

1 Principles or object oriented programming

Why Do We Need Object-Oriented Programming?

Object-oriented programming was developed because limitations were discovered in earlier approaches to

programming. To appreciate what OOP does, we need to understand what these limitations are and how they arose

from traditional programming languages.

1.1 The Object-Oriented Approach

The fundamental idea behind object-oriented languages is to combine into a single unit both data and the functions

that operate on that data. Such a unit is called an object.

An object’s functions, called member functions in C++, typically provide the only way to access its data. If you want

to read a data item in an object, you call a member function in the object. It will access the data and return the value

to you. You can’t access the data directly. The data is hidden, so it is safe from accidental alteration. Data and its

functions are said to be encapsulated into a single entity. Data encapsulation and data hiding are key terms in the

description of object-oriented languages. If you want to modify the data in an object, you know exactly what

functions interact with it: the member functions in the object. No other functions can access the data. This

simplifieswriting, debugging, and maintaining the program. A C++ program typically consists of a number of objects,

which communicate with each other by calling one another’s member functions. The organization of a C++ program

is shown in Figure 1.3: The object-oriented paradigm.

1.2 Characteristics of Object-Oriented Languages

 Objects

ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 4 of 69

Examples are

• Physical objects
• Data-storage
constructs

• Collections of
data

• Components in
computer games

Automobiles in a traffic-flow
simulation Customized arrays An inventory Cars in an auto race
Electrical components in a
circuit-design program Stacks A personnel file

Positions in a board
game (chess, checkers)

Countries in an economics
model Linked lists A dictionary

Animals in an ecological
simulation

Aircraft in an air traffic
control system Binary trees

A table of the
latitudes and
longitudes of world
cities

Opponents and friends
in adventure games

• Elements of the computer-
user environment • Human entities • User-defined data types

Windows Employees Time

Menus Students Angles
Graphics objects (lines,
rectangles, circles) Customers Complex numbers
The mouse, keyboard, disk
drives, printer Salespeople Points on the plane

 Classes:

A class is thus a description of a number of similar objects. It specifies what data and what functions will be included

in objects of that class. Defining the class doesn’t create any objects.

 Inheritance

Features A and B, which are part of the base class, are common to all the derived classes, but that each derived class

also has features of its own.

 Reusability:

Once a class has been written, created, and debugged, it can be distributed to other programmers for use in their

own programs. This is called reusability. It is similar to the way a library of functions in a procedural language can be

incorporated into different programs.

ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 5 of 69

 Creating New Data Types

One of the benefits of objects is that they give the programmer a convenient way to construct new data types, such

as x and y coordinates, or latitude and longitude.

 Polymorphism and Overloading

When an existing operator, such as + or =, is given the capability to operate on a new data type, it is said to be

overloaded. Overloading is a kind of polymorphism; it is also an important feature of OOP.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 6 of 69

2 C++ Getting Started
2.1 Basic Program Construction

Let’s look at a very simple C++ program. This program is called FIRST, so its source file is
FIRST.CPP. It simply prints a sentence on the screen. Here it is:

#include <iostream>
using namespace std;
int main()
{
cout << “Every age has a language of its own\n”;
return 0;
}

Functions
Functions are one of the fundamental building blocks of C++. The FIRST program consists almost entirely
of a single function called main().
Function Name
The parentheses following the word main are the distinguishing feature of a function. Without the
parentheses the compiler would think that main refers to a variable or to some other program element.
Braces and the Function Body
The body of a function is surrounded by braces (sometimes called curly brackets). These braces play the
same role as the BEGIN and END keywords in some other languages.
Always Start with main()
When you run a C++ program, the first statement executed will be at the beginning of a function called
main().

Directives
The two lines that begin the FIRST program are directives. The first is a preprocessor directive, and the
second is a using directive.
Preprocessor Directives
The first line of the FIRST program
#include <iostream>
A preprocessor directive, on the other hand, is an instruction to the compiler. A part of the compiler called
the preprocessor deals with these directives before it begins the real compilation process. The
preprocessor directive #include tells the compiler to insert another file into your source file. In effect, the
#include directive is replaced by the contents of the file indicated.
The using Directive

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 7 of 69

A C++ program can be divided into different namespaces. A namespace is a part of the program in which
certain names are recognized; outside of the namespace they’re unknown. The directive using
namespace std; says that all the program statements that follow are within the std namespace. Various
program components such as cout are declared within this namespace. If we didn’t use the using directive,
we would need to add the std name to many program elements. For example, in the FIRST program we’d
need to say std::cout << “Every age has a language of its own.”;

Comments
The compiler ignores comments, so they do not add to the file size or execution time of the executable
program.
Comment Syntax
// comments.cpp
// demonstrates comments
#include <iostream> //preprocessor directive
using namespace std; //”using” directive
/* ….multi
Line comment…. */

2.2 C++ Language Fundamentals: Tokens, Expressions,

Classes

As we know that Software is a Program. And a Program is that which Contains set of instructions, and an Instruction

contains Some Tokens. So Tokens are used for Writing the Programs the various Types of Tokens those are contained

by the Programs.

2.2.1 Tokens
As in the English language, in a paragraph all the words, punctuation mark and the blank spaces are called Tokens.

Similarly in a C++ program all the C++ statements having Keywords, Identifiers, Constants, Strings, Operators and the

Special Symbols are called C++ Tokens. C++ Tokens are the essential part of a C++ compiler and so are very useful in

the C++ programming. A Token is an individual entity of a C++ program.

For example, some C++ Tokens used in a C++ program are:

Reserve words/ keywords: long, do if, else etc.

Identifiers: Pay, salary etc.

Constant: 470.6,16,49 etc.

Strings: "Dinesh", "2013-01" etc.

Operator: +, *, <, >=, &&,11, etc

Special symbols: 0, {}, #, @, %, etc.

2.2.2 Expressions
There are three types of expressions:

I. Arithmetic expression

II. Relational expression

III. Logical expression

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 8 of 69

What is a C++ OPERATOR?

"C++ OPERATORS are signs use to perform certain task e.g addition"

There are two kinds of operators:

a) Unary operator b) Binary operator

What is the difference between Unary and Binary operator?

Unary operators:

 "Requires single operand item to perform operation".

Binary operators:

 "Required more than one operand item to perform operation".

Types of operators :

 Arithmetic operators

 Relational operators

 Logical operators

 Increment and decrement operators

 Assignment operator

 Bit-wise operator

Arithmetic Expression and Arithmetic operator:

"An expression in which arithmetic operators are used is called arithmetic expression".

For example an arithmetic expression is look just like that a+b=5

Explanation:

LIST OF ARITHMETIC OPERATORS AND THEIR FUNCTIONS

 These are used for all kind of numeric data.

 "%" is also called modulus operator it can be use only with integers.

 Unary operators has higher precedence as compared to binary operators.

 Multiplication (*) and Division(/) as higher priority than addition(+) and subtraction(-) where

addition and division has equal priority.

http://1.bp.blogspot.com/-Z1-5BziSirA/TrMT6CzqHuI/AAAAAAAAAFk/-Oy5EHr-664/s1600/operators.PNG

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 9 of 69

Modes of Arithmetic Expressions

1.Mixed arithmetic

2.Real arithmetic

3.Integer arithmetic

Integer arithmetic mode

In this mode when arithmetic operation perform by using integer values it always result an integer

value.

for example:

a=5 , b=5

a*b=25 , a/b=1 , a+b=10 , a-b=0

Real arithmetic mode

In this mode when a arithmetic operation is performed by using floating point numbers it always

result an floating value.

a=10.0 , b=5.0

a*b=50.0 a/b=2.0 a+b=15.0 a-b=5.0

Mixed arithmetic mode

In this mode when an arithmetic operation performed on float and integer values it always result a

float value.

For example:

a=10 , b=5.0

a*b=50.0,a/b=2.0,a+b=15.0,a-b=5.0

Relational operators and relational expressions

"A relational operator with constants and variables makes relational expression or An expressions in

which relational operators are use is called relationalexpression."

Points about relational operators

 1.Relational operators are use to compare values.

 2.All the expressions evaluates from left to right.

 3.There are six relational operators in C++ programming (>,< ,>=,<=,==,!=).

 4.These operators evaluates results true or false.

 5.False statement represent by 0 and True statement represent by 1.

 6.These operators evaluate at statement level and has no preference.

 Logical Expression and Logical Operators

Logical operators

http://4.bp.blogspot.com/-y9F7FJy0RrE/TrMVHFkjlxI/AAAAAAAAAFs/mpmNinN5rRw/s1600/Capture2.PNG

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 10 of 69

 1.There are three logical operators And(&&),or(||) these two both are binary operator and not(!)

is u nary operator.

 2.More than one relation expression are combine by using logical operators.

 3.The expression will evaluate from left to right if more than one relation expression are use.

And operator (&&)

 It produces true result if all the expression or conditions are true.

 It produces false if any one expression is false.

 Below table shows evaluation method of and operator.

 1 represent True 0 represent false.

Example to understanding of And (&&) operator.

a=10,b=5

 Or operator(||)

It produces true if any expression is true.

 It produces false if all the conditions are false.

 Below table shows evaluation method of Or(||) operator.

http://1.bp.blogspot.com/-yKvlf7P_RO0/TrMVkza2BeI/AAAAAAAAAF0/P7TlFxZI-vY/s1600/Capture3.PNG
http://1.bp.blogspot.com/-JobJI5pGrTY/TrMWkfhJoUI/AAAAAAAAAF8/lI0hUgeVlZU/s1600/Capture4.PNG
http://2.bp.blogspot.com/-OUkJl-0TEVk/TrMZBT0V-3I/AAAAAAAAAGM/aRW352wo3iA/s1600/Capture6.PNG

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 11 of 69

Example to understanding of And (||) operator.

a=10,b=5,

 Not operator(!)

 1.If expression provides true result it convert it into false.

 2.If expression provides false result it convert it into true.

Evaluation method.

Result ! Result

1 0

0 1

Example to understanding of And (!) operator.

a=10,b=5

http://3.bp.blogspot.com/-RMZ9wkAPZWI/TrMXm5I_2EI/AAAAAAAAAGE/vQfP7ezuMb8/s1600/Capture5.PNG
http://4.bp.blogspot.com/-8eOlEq96s5Q/TrMZXpVuF1I/AAAAAAAAAGU/FyGNvRq9sfc/s1600/Capture7.PNG

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 12 of 69

2.2.3 Classes
A class is an expanded concept of a data structure: instead of holding only data, it can hold
both data and functions.

An object is an instantiation of a class. In terms of variables, a class would be the type, and
an object would be the variable.

Classes are generally declared using the keyword class, with the following format:

class class_name {

 access_specifier_1:

 member1;

 access_specifier_2:

 member2;

 ...

 } object_names;

Where class_name is a valid identifier for the class, object_names is an optional list of names

for objects of this class. The body of the declaration can contain members, that can be either

data or function declarations, and optionally access specifiers.

All is very similar to the declaration on data structures, except that we can now include also
functions and members, but also this new thing called access specifier. An access specifier is

one of the following three keywords:private, public or protected. These specifiers modify

the access rights that the members following them acquire:

 private members of a class are accessible only from within other members of the

same class or from theirfriends.

 protected members are accessible from members of their same class and from their

friends, but also from members of their derived classes.

 Finally, public members are accessible from anywhere where the object is visible.

By default, all members of a class declared with the class keyword have private access for

all its members. Therefore, any member that is declared before one other class specifier
automatically has private access. For example:

1

2

3

4

5

6

class CRectangle {

 int x, y;

 public:

 void set_values (int,int);

 int area (void);

 } rect;

Declares a class (i.e., a type) called CRectangle and an object (i.e., a variable) of this class

called rect. This class contains four members: two data members of

type int (member x and member y) with private access (because private is the default

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 13 of 69

access level) and two member functions with public access: set_values() and area(), of

which for now we have only included their declaration, not their definition.

Notice the difference between the class name and the object name: In the previous

example, CRectangle was the class name (i.e., the type), whereas rect was an object of

type CRectangle. It is the same relationship int and ahave in the following declaration:

 int a;

where int is the type name (the class) and a is the variable name (the object).

After the previous declarations of CRectangle and rect, we can refer within the body of the

program to any of the public members of the object rect as if they were normal functions or

normal variables, just by putting the object's name followed by a dot (.) and then the name

of the member. All very similar to what we did with plain data structures before. For

example:

1

2

rect.set_values (3,4);

myarea = rect.area();

The only members of rect that we cannot access from the body of our program outside the

class are x and y, since they have private access and they can only be referred from within

other members of that same class.

Here is the complete example of class CRectangle:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

// classes example

#include <iostream>

using namespace std;

class CRectangle {

 int x, y;

 public:

 void set_values (int,int);

 int area () {return

(x*y);}

};

void CRectangle::set_values

(int a, int b) {

 x = a;

 y = b;

}

int main () {

 CRectangle rect;

 rect.set_values (3,4);

 cout << "area: " <<

rect.area();

 return 0;

}

area: 12

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 14 of 69

The most important new thing in this code is the operator of scope (::, two colons) included

in the definition ofset_values(). It is used to define a member of a class from outside the

class definition itself.

You may notice that the definition of the member function area() has been included directly

within the definition of the CRectangle class given its extreme simplicity,

whereas set_values() has only its prototype declared within the class, but its definition is

outside it. In this outside definition, we must use the operator of scope (::) to specify that

we are defining a function that is a member of the class CRectangle and not a regular global

function.

The scope operator (::) specifies the class to which the member being declared belongs,

granting exactly the same scope properties as if this function definition was directly included

within the class definition. For example, in the function set_values() of the previous code,

we have been able to use the variables x and y, which are private members of

class CRectangle, which means they are only accessible from other members of their class.

The only difference between defining a class member function completely within its class or to
include only the prototype and later its definition, is that in the first case the function will

automatically be considered an inline member function by the compiler, while in the second it
will be a normal (not-inline) class member function, which in fact supposes no difference in
behavior.

Members x and y have private access (remember that if nothing else is said, all members of a

class defined with keyword class have private access). By declaring them private we deny
access to them from anywhere outside the class. This makes sense, since we have already

defined a member function to set values for those members within the object: the member

function set_values(). Therefore, the rest of the program does not need to have direct

access to them. Perhaps in a so simple example as this, it is difficult to see any utility in
protecting those two variables, but in greater projects it may be very important that values

cannot be modified in an unexpected way (unexpected from the point of view of the object).

One of the greater advantages of a class is that, as any other type, we can declare several

objects of it. For example, following with the previous example of class CRectangle, we could

have declared the object rectb in addition to the object rect:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// example: one class, two

objects

#include <iostream>

using namespace std;

class CRectangle {

 int x, y;

 public:

 void set_values (int,int);

 int area () {return

(x*y);}

};

void CRectangle::set_values

(int a, int b) {

rect area: 12

rectb area: 30

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 15 of 69

16

17

18

19

20

21

22

23

24

 x = a;

 y = b;

}

int main () {

 CRectangle rect, rectb;

 rect.set_values (3,4);

 rectb.set_values (5,6);

 cout << "rect area: " <<

rect.area() << endl;

 cout << "rectb area: " <<

rectb.area() << endl;

 return 0;

}

In this concrete case, the class (type of the objects) to which we are talking about

is CRectangle, of which there are two instances or objects: rect and rectb. Each one of

them has its own member variables and member functions.

Notice that the call to rect.area() does not give the same result as the call

to rectb.area(). This is because each object of class CRectangle has its own

variables x and y, as they, in some way, have also their own function

members set_value() and area() that each uses its object's own variables to operate.

That is the basic concept of object-oriented programming: Data and functions are both
members of the object. We no longer use sets of global variables that we pass from one
function to another as parameters, but instead we handle objects that have their own data

and functions embedded as members. Notice that we have not had to give any parameters in

any of the calls to rect.area or rectb.area. Those member functions directly used the data

members of their respective objects rect and rectb.

2.3 Functions, Constructors, Destructors

2.3.1 Functions
Using functions we can structure our programs in a more modular way, accessing all the potential that structured
programming can offer to us in C++.

A function is a group of statements that is executed when it is called from some point of the program. The following
is its format:

type name (parameter1, parameter2, ...) { statements }

where:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 16 of 69

 type is the data type specifier of the data returned by the function.
 name is the identifier by which it will be possible to call the function.
 parameters (as many as needed): Each parameter consists of a data type specifier followed by an identifier,

like any regular variable declaration (for example: int x) and which acts within the function as a regular local
variable. They allow to pass arguments to the function when it is called. The different parameters are
separated by commas.

 statements is the function's body. It is a block of statements surrounded by braces { }.

Here you have the first function example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

// function example
#include <iostream>
using namespace std;

int addition (int a, int b)
{
 int r;
 r=a+b;
 return (r);
}

int main ()
{
 int z;
 z = addition (5,3);
 cout << "The result is " << z;
 return 0;
}

The result is 8

In order to examine this code, first of all remember something said at the beginning of this tutorial: a C++ program
always begins its execution by the main function. So we will begin there.

We can see how the main function begins by declaring the variable z of type int. Right after that, we see a call to a
function called addition. Paying attention we will be able to see the similarity between the structure of the call to the
function and the declaration of the function itself some code lines above:

The parameters and arguments have a clear correspondence. Within the main function we called to additionpassing
two values: 5 and 3, that correspond to the int a and int b parameters declared for function addition.

At the point at which the function is called from within main, the control is lost by main and passed to
functionaddition. The value of both arguments passed in the call (5 and 3) are copied to the local variables int
a and int b within the function.

Function addition declares another local variable (int r), and by means of the expression r=a+b, it assigns to rthe
result of a plus b. Because the actual parameters passed for a and b are 5 and 3 respectively, the result is 8.

The following line of code:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 17 of 69

 return (r);

finalizes function addition, and returns the control back to the function that called it in the first place (in this
case,main). At this moment the program follows its regular course from the same point at which it was interrupted
by the call to addition. But additionally, because the return statement in function addition specified a value: the
content of variable r (return (r);), which at that moment had a value of 8. This value becomes the value of evaluating
the function call.

So being the value returned by a function the value given to the function call itself when it is evaluated, the
variable z will be set to the value returned by addition (5, 3), that is 8. To explain it another way, you can imagine
that the call to a function (addition (5,3)) is literally replaced by the value it returns (8).

The following line of code in main is:

 cout << "The result is " << z;

That, as you may already expect, produces the printing of the result on the screen.

Scope of variables

The scope of variables declared within a function or any other inner block is only their own function or their own
block and cannot be used outside of them. For example, in the previous example it would have been impossible to
use the variables a, b or r directly in function main since they were variables local to function addition. Also, it would
have been impossible to use the variable z directly within function addition, since this was a variable local to the
function main.

Therefore, the scope of local variables is limited to the same block level in which they are declared. Nevertheless,
we also have the possibility to declare global variables; These are visible from any point of the code, inside and

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 18 of 69

outside all functions. In order to declare global variables you simply have to declare the variable outside any
function or block; that means, directly in the body of the program.

And here is another example about functions:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

// function example
#include <iostream>
using namespace std;

int subtraction (int a, int b)
{
 int r;
 r=a-b;
 return (r);
}

int main ()
{
 int x=5, y=3, z;
 z = subtraction (7,2);
 cout << "The first result is " << z << '\n';
 cout << "The second result is " << subtraction (7,2) << '\n';
 cout << "The third result is " << subtraction (x,y) << '\n';
 z= 4 + subtraction (x,y);
 cout << "The fourth result is " << z << '\n';
 return 0;
}

The first result is 5
The second result is 5
The third result is 2
The fourth result is 6

In this case we have created a function called subtraction. The only thing that this function does is to subtract both
passed parameters and to return the result.

Nevertheless, if we examine function main we will see that we have made several calls to function subtraction. We
have used some different calling methods so that you see other ways or moments when a function can be called.

In order to fully understand these examples you must consider once again that a call to a function could be replaced
by the value that the function call itself is going to return. For example, the first case (that you should already know
because it is the same pattern that we have used in previous examples):

1
2

z = subtraction (7,2);
cout << "The first result is " << z;

If we replace the function call by the value it returns (i.e., 5), we would have:

1
2

z = 5;
cout << "The first result is " << z;

As well as

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 19 of 69

 cout << "The second result is " << subtraction (7,2);

has the same result as the previous call, but in this case we made the call to subtraction directly as an insertion
parameter for cout. Simply consider that the result is the same as if we had written:

 cout << "The second result is " << 5;

since 5 is the value returned by subtraction (7,2).

In the case of:

 cout << "The third result is " << subtraction (x,y);

The only new thing that we introduced is that the parameters of subtraction are variables instead of constants. That
is perfectly valid. In this case the values passed to function subtraction are the values of x and y, that
are 5and 3 respectively, giving 2 as result.

The fourth case is more of the same. Simply note that instead of:

 z = 4 + subtraction (x,y);

we could have written:

 z = subtraction (x,y) + 4;

with exactly the same result. I have switched places so you can see that the semicolon sign (;) goes at the end of the
whole statement. It does not necessarily have to go right after the function call. The explanation might be once again
that you imagine that a function can be replaced by its returned value:

1
2

z = 4 + 2;
z = 2 + 4;

Functions with no type. The use of void.

If you remember the syntax of a function declaration:

type name (argument1, argument2 ...) statement

you will see that the declaration begins with a type, that is the type of the function itself (i.e., the type of the datum
that will be returned by the function with the return statement). But what if we want to return no value?

Imagine that we want to make a function just to show a message on the screen. We do not need it to return any
value. In this case we should use the void type specifier for the function. This is a special specifier that indicates

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 20 of 69

absence of type.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// void function example
#include <iostream>
using namespace std;

void printmessage ()
{
 cout << "I'm a function!";
}

int main ()
{
 printmessage ();
 return 0;
}

I'm a function!

void can also be used in the function's parameter list to explicitly specify that we want the function to take no actual
parameters when it is called. For example, function printmessage could have been declared as:

1
2
3
4

void printmessage (void)
{
 cout << "I'm a function!";
}

Although it is optional to specify void in the parameter list. In C++, a parameter list can simply be left blank if we
want a function with no parameters.

What you must always remember is that the format for calling a function includes specifying its name and enclosing
its parameters between parentheses. The non-existence of parameters does not exempt us from the obligation to
write the parentheses. For that reason the call to printmessage is:

 printmessage ();

The parentheses clearly indicate that this is a call to a function and not the name of a variable or some other C++
statement. The following call would have been incorrect:

 printmessage;

Arguments passed by value and by reference.

Until now, in all the functions we have seen, the arguments passed to the functions have been passed by value. This
means that when calling a function with parameters, what we have passed to the function were copies of their
values but never the variables themselves. For example, suppose that we called our first function additionusing the
following code:

1
2

int x=5, y=3, z;
z = addition (x , y);

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 21 of 69

What we did in this case was to call to function addition passing the values of x and y, i.e. 5 and 3 respectively, but
not the variables x and y themselves.

This way, when the function addition is called, the value of its local variables a and b become 5 and 3 respectively,
but any modification to either a or b within the function addition will not have any effect in the values
of x and youtside it, because variables x and y were not themselves passed to the function, but only copies of their
values at the moment the function was called.

But there might be some cases where you need to manipulate from inside a function the value of an external
variable. For that purpose we can use arguments passed by reference, as in the function duplicate of the following
example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

// passing parameters by reference
#include <iostream>
using namespace std;

void duplicate (int& a, int& b, int& c)
{
 a*=2;
 b*=2;
 c*=2;
}

int main ()
{
 int x=1, y=3, z=7;
 duplicate (x, y, z);
 cout << "x=" << x << ", y=" << y << ", z=" << z;
 return 0;
}

x=2, y=6, z=14

The first thing that should call your attention is that in the declaration of duplicate the type of each parameter was
followed by an ampersand sign (&). This ampersand is what specifies that their corresponding arguments are to be
passed by reference instead of by value.

When a variable is passed by reference we are not passing a copy of its value, but we are somehow passing the
variable itself to the function and any modification that we do to the local variables will have an effect in their
counterpart variables passed as arguments in the call to the function.

To explain it in another way, we associate a, b and c with the arguments passed on the function call (x, y and z) and
any change that we do on a within the function will affect the value of x outside it. Any change that we do on bwill
affect y, and the same with c and z.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 22 of 69

That is why our program's output, that shows the values stored in x, y and z after the call to duplicate, shows the
values of all the three variables of main doubled.

If when declaring the following function:

 void duplicate (int& a, int& b, int& c)

we had declared it this way:

 void duplicate (int a, int b, int c)

i.e., without the ampersand signs (&), we would have not passed the variables by reference, but a copy of their
values instead, and therefore, the output on screen of our program would have been the values of x, y and zwithout
having been modified.

Passing by reference is also an effective way to allow a function to return more than one value. For example, here is
a function that returns the previous and next numbers of the first parameter passed.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// more than one returning value
#include <iostream>
using namespace std;

void prevnext (int x, int& prev, int& next)
{
 prev = x-1;
 next = x+1;
}

int main ()
{
 int x=100, y, z;
 prevnext (x, y, z);
 cout << "Previous=" << y << ", Next=" << z;
 return 0;
}

Previous=99, Next=101

Default values in parameters.
When declaring a function we can specify a default value for each of the last parameters. This value will be used if
the corresponding argument is left blank when calling to the function. To do that, we simply have to use the
assignment operator and a value for the arguments in the function declaration. If a value for that parameter is not
passed when the function is called, the default value is used, but if a value is specified this default value is ignored
and the passed value is used instead. For example:

1
2
3

// default values in functions
#include <iostream>
using namespace std;

6
5

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 23 of 69

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

int divide (int a, int b=2)
{
 int r;
 r=a/b;
 return (r);
}

int main ()
{
 cout << divide (12);
 cout << endl;
 cout << divide (20,4);
 return 0;
}

As we can see in the body of the program there are two calls to function divide. In the first one:

 divide (12)

we have only specified one argument, but the function divide allows up to two. So the function divide has assumed
that the second parameter is 2 since that is what we have specified to happen if this parameter was not passed
(notice the function declaration, which finishes with int b=2, not just int b). Therefore the result of this function call
is 6 (12/2).

In the second call:

 divide (20,4)

there are two parameters, so the default value for b (int b=2) is ignored and b takes the value passed as argument,
that is 4, making the result returned equal to 5 (20/4).

Overloaded functions.
In C++ two different functions can have the same name if their parameter types or number are different. That means
that you can give the same name to more than one function if they have either a different number of parameters or
different types in their parameters. For example:

1
2
3
4
5
6
7
8
9
10

// overloaded function
#include <iostream>
using namespace std;

int operate (int a, int b)
{
 return (a*b);
}

float operate (float a, float b)

10
2.5

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 24 of 69

11
12
13
14
15
16
17
18
19
20
21
22
23
24

{
 return (a/b);
}

int main ()
{
 int x=5,y=2;
 float n=5.0,m=2.0;
 cout << operate (x,y);
 cout << "\n";
 cout << operate (n,m);
 cout << "\n";
 return 0;
}

In this case we have defined two functions with the same name, operate, but one of them accepts two parameters
of type int and the other one accepts them of type float. The compiler knows which one to call in each case by
examining the types passed as arguments when the function is called. If it is called with two ints as its arguments it
calls to the function that has two int parameters in its prototype and if it is called with two floats it will call to the
one which has two float parameters in its prototype.

In the first call to operate the two arguments passed are of type int, therefore, the function with the first prototype
is called; This function returns the result of multiplying both parameters. While the second call passes two
arguments of type float, so the function with the second prototype is called. This one has a different behavior: it
divides one parameter by the other. So the behavior of a call to operate depends on the type of the arguments
passed because the function has been overloaded.

Notice that a function cannot be overloaded only by its return type. At least one of its parameters must have a
different type.

inline functions.
The inline specifier indicates the compiler that inline substitution is preferred to the usual function call mechanism
for a specific function. This does not change the behavior of a function itself, but is used to suggest to the compiler
that the code generated by the function body is inserted at each point the function is called, instead of being
inserted only once and perform a regular call to it, which generally involves some additional overhead in running
time.

The format for its declaration is:

inline type name (arguments ...) { instructions ... }

and the call is just like the call to any other function. You do not have to include the inline keyword when calling the
function, only in its declaration.

Most compilers already optimize code to generate inline functions when it is more convenient. This specifier only
indicates the compiler that inline is preferred for this function.

Recursivity.
Recursivity is the property that functions have to be called by themselves. It is useful for many tasks, like sorting or

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 25 of 69

calculate the factorial of numbers. For example, to obtain the factorial of a number (n!) the mathematical formula
would be:

n! = n * (n-1) * (n-2) * (n-3) ... * 1

more concretely, 5! (factorial of 5) would be:

5! = 5 * 4 * 3 * 2 * 1 = 120

and a recursive function to calculate this in C++ could be:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

// factorial calculator
#include <iostream>
using namespace std;

long factorial (long a)
{
 if (a > 1)
 return (a * factorial (a-1));
 else
 return (1);
}

int main ()
{
 long number;
 cout << "Please type a number: ";
 cin >> number;
 cout << number << "! = " << factorial (number);
 return 0;
}

Please type a number: 9
9! = 362880

Notice how in function factorial we included a call to itself, but only if the argument passed was greater than 1, since
otherwise the function would perform an infinite recursive loop in which once it arrived to 0 it would continue
multiplying by all the negative numbers (probably provoking a stack overflow error on runtime).

This function has a limitation because of the data type we used in its design (long) for more simplicity. The results
given will not be valid for values much greater than 10! or 15!, depending on the system you compile it.

Declaring functions.
Until now, we have defined all of the functions before the first appearance of calls to them in the source code. These
calls were generally in function main which we have always left at the end of the source code. If you try to repeat
some of the examples of functions described so far, but placing the function main before any of the other functions
that were called from within it, you will most likely obtain compiling errors. The reason is that to be able to call a
function it must have been declared in some earlier point of the code, like we have done in all our examples.

But there is an alternative way to avoid writing the whole code of a function before it can be used in main or in some
other function. This can be achieved by declaring just a prototype of the function before it is used, instead of the

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 26 of 69

entire definition. This declaration is shorter than the entire definition, but significant enough for the compiler to
determine its return type and the types of its parameters.

Its form is:

<return type> <function name> (argument_type1, argument_type2, ...);

It is identical to a function definition, except that it does not include the body of the function itself (i.e., the function
statements that in normal definitions are enclosed in braces { }) and instead of that we end the prototype
declaration with a mandatory semicolon (;).

The parameter enumeration does not need to include the identifiers, but only the type specifiers. The inclusion of a
name for each parameter as in the function definition is optional in the prototype declaration. For example, we can
declare a function called protofunction with two int parameters with any of the following declarations:

1
2

int protofunction (int first, int second);
int protofunction (int, int);

Anyway, including a name for each variable makes the prototype more legible.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// declaring functions prototypes
#include <iostream>
using namespace std;

void odd (int a);
void even (int a);

int main ()
{
 int i;
 do {
 cout << "Type a number (0 to exit): ";
 cin >> i;
 odd (i);
 } while (i!=0);
 return 0;
}

void odd (int a)
{
 if ((a%2)!=0) cout << "Number is odd.\n";
 else even (a);
}

void even (int a)
{
 if ((a%2)==0) cout << "Number is even.\n";
 else odd (a);
}

Type a number (0 to exit): 9
Number is odd.
Type a number (0 to exit): 6
Number is even.
Type a number (0 to exit): 1030
Number is even.
Type a number (0 to exit): 0
Number is even.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 27 of 69

This example is indeed not an example of efficiency. I am sure that at this point you can already make a program
with the same result, but using only half of the code lines that have been used in this example. Anyway this example
illustrates how prototyping works. Moreover, in this concrete example the prototyping of at least one of the two
functions is necessary in order to compile the code without errors.

The first things that we see are the declaration of functions odd and even:

1
2

void odd (int a);
void even (int a);

This allows these functions to be used before they are defined, for example, in main, which now is located where
some people find it to be a more logical place for the start of a program: the beginning of the source code.

Anyway, the reason why this program needs at least one of the functions to be declared before it is defined is
because in odd there is a call to even and in even there is a call to odd. If none of the two functions had been
previously declared, a compilation error would happen, since either odd would not be visible from even (because it
has still not been declared), or even would not be visible from odd (for the same reason).

Having the prototype of all functions together in the same place within the source code is found practical by some
programmers, and this can be easily achieved by declaring all functions prototypes at the beginning of a program.

2.4 The main() function

2.5 When a program begins running, the system calls

the function main, which marks the entry point of the

program. By default, main has the storage class extern.

Every program must have one function named main

The function main can be defined with or without parameters, using any of the following forms:

int main (void)

int main ()

int main(int argc, char *argv[])

int main (int argc, char ** argv)

The first parameter, argc (argument count) is an integer that indicates how many arguments were entered

on the command line when the program was started. The second parameter, argv(argument vector), is an

array of pointers to arrays of character objects.

2.6 Constructors

When an object of a class is created, C++ calls the constructor for that class. If no constructor is defined, C++ invokes
a default constructor, which allocates memory for the object, but doesn't initialize it.
Why you should define a constructor
Uninitialized member fields have garbage in them. This creates the possibility of a serious bug (eg, an uninitialized
pointer, illegal values, inconsistent values, ...).

2.6.1 Declaring a constructor
A constructor is similar to a function, but with the following differences.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 28 of 69

 No return type.
 No return statement.

Example [extracts from three different files].
//=== point/point.h ===
#ifndef POINT_H
#define POINT_H
class Point {
 public:
 Point(); // parameterless default constructor
 Point(int new_x, int new_y); // constructor with parameters
 int getX();
 int getY();
 private:
 int x;
 int y;
};
#endif
Here is part of the implementation file.
//=== point/point.cpp ==
. . .
Point::Point() { // default constructor
 x = 0;
 y = 0;
}

Point::Point(int new_x, int new_y) { // constructor
 x = new_x;
 y = new_y;
}
. . .
And here is part of a file that uses the Point class.
//=== point/main.cpp ==
 . . .
 Point p; // calls our default constructor
 Point q(10,20); // calls constructor with parameters
 Point* r = new Point(); // calls default constructor
 Point s = p; // our default constructor not called.
 . . .

Copy Constructors

2.7 When copies of objects are made

A copy constructor is called whenever a new variable is created from an object. This happens in the

following cases (but not in assignment).

 A variable is declared which is initialized from another object, eg,

 Person q("Mickey"); // constructor is used to build q.

 Person r(p); // copy constructor is used to build r.

 Person p = q; // copy constructor is used to initialize in

declaration.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 29 of 69

p = q; // Assignment operator, no constructor or copy

constructor.

 A value parameter is initialized from its corresponding argument.

f(p); // copy constructor initializes formal value

parameter.

 An object is returned by a function.

C++ calls a copy constructor to make a copy of an object in each of the above cases. If there is no

copy constructor defined for the class, C++ uses the default copy constructor which copies each field,

ie, makes ashallow copy.

2.8 Copy constructor syntax

The copy constructor takes a reference to a const parameter. It is const to guarantee that the copy

constructor doesn't change it, and it is a reference because a value parameter would require making a

copy, which would invoke the copy constructor, which would make a copy of its parameter, which

would invoke the copy constructor, which ...

Here is an example of a copy constructor for the Point class, which doesn't really need one because the

default copy constructor's action of copying fields would work fine, but it shows how it works.

//=== file Point.h ===

class Point {

 public:

 . . .

 Point(const Point& p); // copy constructor

 . . .

//=== file Point.cpp ==

. . .

Point::Point(const Point& p) {

 x = p.x;

 y = p.y;

}

 . . .

//=== file my_program.cpp ====================================

. . .

Point p; // calls default constructor

Point s = p; // calls copy constructor.

p = s; // assignment, not copy constructor.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 30 of 69

2.8.1 Destructors
Destructors are usually used to deallocate memory and do other cleanup for a class object and its class
members when the object is destroyed. A destructor is called for a class object when that object passes out
of scope or is explicitly deleted.

A destructor is a member function with the same name as its class prefixed by a ~ (tilde). For example:

class X {

public:

 // Constructor for class X

 X();

 // Destructor for class X

 ~X();

};

A destructor takes no arguments and has no return type. Its address cannot be taken. Destructors cannot

be declared const, volatile, const volatile or static. A destructor can be declared virtual or

pure virtual.

If no user-defined destructor exists for a class and one is needed, the compiler implicitly declares a
destructor. This implicitly declared destructor is an inline public member of its class.

The compiler will implicitly define an implicitly declared destructor when the compiler uses the destructor to

destroy an object of the destructor's class type. Suppose a class A has an implicitly declared destructor.

The following is equivalent to the function the compiler would implicitly define forA:

 A::~A() { }

The compiler first implicitly defines the implicitly declared destructors of the base classes and nonstatic data

members of a class A before defining the implicitly declared destructor of A

A destructor of a class A is trivial if all the following are true:

 It is implicitly defined

 All the direct base classes of A have trivial destructors

 The classes of all the nonstatic data members of A have trivial destructors

If any of the above are false, then the destructor is nontrivial.

A union member cannot be of a class type that has a nontrivial destructor.

Class members that are class types can have their own destructors. Both base and derived classes can

have destructors, although destructors are not inherited. If a base class A or a member of A has a

destructor, and a class derived from A does not declare a destructor, a default destructor is generated.

The default destructor calls the destructors of the base class and members of the derived class.

The destructors of base classes and members are called in the reverse order of the completion of their
constructor:

1. The destructor for a class object is called before destructors for members and bases are called.
2. Destructors for nonstatic members are called before destructors for base classes are called.
3. Destructors for nonvirtual base classes are called before destructors for virtual base classes are

called.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 31 of 69

When an exception is thrown for a class object with a destructor, the destructor for the temporary object
thrown is not called until control passes out of the catch block.

Destructors are implicitly called when an automatic object (a local object that has been

declared auto or register, or not declared as static orextern) or temporary object passes out of

scope. They are implicitly called at program termination for constructed external and static objects.

Destructors are invoked when you use the delete operator for objects created with the new operator.

For example:

#include <string>

class Y {

private:

 char * string;

 int number;

public:

 // Constructor

 Y(const char*, int);

 // Destructor

 ~Y() { delete[] string; }

};

// Define class Y constructor

Y::Y(const char* n, int a) {

 string = strcpy(new char[strlen(n) + 1], n);

 number = a;

}

int main () {

 // Create and initialize

 // object of class Y

 Y yobj = Y("somestring", 10);

 // ...

 // Destructor ~Y is called before

 // control returns from main()

}

You can use a destructor explicitly to destroy objects, although this practice is not recommended. However

to destroy an object created with the placement new operator, you can explicitly call the object's destructor.

The following example demonstrates this:

#include <new>

#include <iostream>

using namespace std;

class A {

 public:

 A() { cout << "A::A()" << endl; }

 ~A() { cout << "A::~A()" << endl; }

};

int main () {

 char* p = new char[sizeof(A)];

 A* ap = new (p) A;

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 32 of 69

 ap->A::~A();

 delete [] p;

}

The statement A* ap = new (p) A dynamically creates a new object of type A not in the free store but

in the memory allocated by p. The statement delete [] p will delete the storage allocated by p, but the

run time will still believe that the object pointed to by ap still exists until you explicitly call the destructor

of A (with the statement ap->A::~A()).

2.8.2 Functions overloading
You overload a function name f by declaring more than one function with the name f in the same scope.

The declarations of f must differ from each other by the types and/or the number of arguments in the

argument list. When you call an overloaded function named f, the correct function is selected by comparing

the argument list of the function call with the parameter list of each of the overloaded candidate functions

with the name f. A candidate function is a function that can be called based on the context of the call of the

overloaded function name.

Consider a function print, which displays an int. As shown in the following example, you can overload

the function print to display other types, for example, double and char*. You can have three functions

with the same name, each performing a similar operation on a different data type:

#include <iostream>

using namespace std;

void print(int i) {

 cout << " Here is int " << i << endl;

}

void print(double f) {

 cout << " Here is float " << f << endl;

}

void print(char* c) {

 cout << " Here is char* " << c << endl;

}

int main() {

 print(10);

 print(10.10);

 print("ten");

}

The following is the output of the above example:

 Here is int 10

 Here is float 10.1

 Here is char* ten

2.8.3 Overloading operators
C++ incorporates the option to use standard operators to perform operations with classes in addition to with
fundamental types. For example:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 33 of 69

1

2

int a, b, c;

a = b + c;

This is obviously valid code in C++, since the different variables of the addition are all fundamental types.
Nevertheless, it is not so obvious that we could perform an operation similar to the following one:

1

2

3

4

5

struct {

 string product;

 float price;

} a, b, c;

a = b + c;

In fact, this will cause a compilation error, since we have not defined the behavior our class should have with

addition operations. However, thanks to the C++ feature to overload operators, we can design classes able to

perform operations using standard operators. Here is a list of all the operators that can be overloaded:

Overloadable operators

+ - * / = < > += -= *= /= << >>

<<= >>= == != <= >= ++ -- % & ^ ! |

~ &= ^= |= && || %= [] () , ->* -> new

delete new[] delete[]

To overload an operator in order to use it with classes we declare operator functions, which are regular functions
whose names are the operator keyword followed by the operator sign that we want to overload. The format is:

type operator sign (parameters) { /*...*/ }

Here you have an example that overloads the addition operator (+). We are going to create a class to store

bidimensional vectors and then we are going to add two of them: a(3,1) and b(1,2). The addition of two

bidimensional vectors is an operation as simple as adding the two x coordinates to obtain the resulting xcoordinate

and adding the two y coordinates to obtain the resulting y. In this case the result will be (3+1,1+2) = (4,3).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

// vectors: overloading operators example

#include <iostream>

using namespace std;

class CVector {

 public:

 int x,y;

 CVector () {};

 CVector (int,int);

 CVector operator + (CVector);

};

CVector::CVector (int a, int b) {

 x = a;

 y = b;

}

CVector CVector::operator+ (CVector param)

{

 CVector temp;

 temp.x = x + param.x;

 temp.y = y + param.y;

 return (temp);

}

int main () {

 CVector a (3,1);

 CVector b (1,2);

4,3

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 34 of 69

29

30

31

32

 CVector c;

 c = a + b;

 cout << c.x << "," << c.y;

 return 0;

}

It may be a little confusing to see so many times the CVector identifier. But, consider that some of them refer to

the class name (type) CVector and some others are functions with that name (constructors must have the same

name as the class). Do not confuse them:

1

2

CVector (int, int); // function name CVector (constructor)

CVector operator+ (CVector); // function returns a CVector

The function operator+ of class CVector is the one that is in charge of overloading the addition operator (+). This

function can be called either implicitly using the operator, or explicitly using the function name:

1

2

c = a + b;

c = a.operator+ (b);

Both expressions are equivalent.

Notice also that we have included the empty constructor (without parameters) and we have defined it with an
empty block:

 CVector () { };

This is necessary, since we have explicitly declared another constructor:

 CVector (int, int);

And when we explicitly declare any constructor, with any number of parameters, the default constructor with no
parameters that the compiler can declare automatically is not declared, so we need to declare it ourselves in order
to be able to construct objects of this type without parameters. Otherwise, the declaration:

 CVector c;

included in main() would not have been valid.

Anyway, I have to warn you that an empty block is a bad implementation for a constructor, since it does not fulfill
the minimum functionality that is generally expected from a constructor, which is the initialization of all the
member variables in its class. In our case this constructor leaves the variables x and y undefined. Therefore, a

more advisable definition would have been something similar to this:

 CVector () { x=0; y=0; };

which in order to simplify and show only the point of the code I have not included in the example.

As well as a class includes a default constructor and a copy constructor even if they are not declared, it also
includes a default definition for the assignment operator (=) with the class itself as parameter. The behavior which

is defined by default is to copy the whole content of the data members of the object passed as argument (the one

at the right side of the sign) to the one at the left side:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 35 of 69

1

2

3

CVector d (2,3);

CVector e;

e = d; // copy assignment operator

The copy assignment operator function is the only operator member function implemented by default. Of course,
you can redefine it to any other functionality that you want, like for example, copy only certain class members or
perform additional initialization procedures.

2.9 Pointers

We have already seen how variables are seen as memory cells that can be accessed using their identifiers. This
way we did not have to care about the physical location of our data within memory, we simply used its identifier
whenever we wanted to refer to our variable.

The memory of your computer can be imagined as a succession of memory cells, each one of the minimal size that
computers manage (one byte). These single-byte memory cells are numbered in a consecutive way, so as, within

any block of memory, every cell has the same number as the previous one plus one.

This way, each cell can be easily located in the memory because it has a unique address and all the memory cells
follow a successive pattern. For example, if we are looking for cell 1776 we know that it is going to be right
between cells 1775 and 1777, exactly one thousand cells after 776 and exactly one thousand cells before cell
2776.

2.9.1 Reference operator (&)
As soon as we declare a variable, the amount of memory needed is assigned for it at a specific location in memory

(its memory address). We generally do not actively decide the exact location of the variable within the panel of
cells that we have imagined the memory to be - Fortunately, that is a task automatically performed by the
operating system during runtime. However, in some cases we may be interested in knowing the address where
our variable is being stored during runtime in order to operate with relative positions to it.

The address that locates a variable within memory is what we call a reference to that variable. This reference to a
variable can be obtained by preceding the identifier of a variable with an ampersand sign (&), known as reference

operator, and which can be literally translated as "address of". For example:

 ted = &andy;

This would assign to ted the address of variable andy, since when preceding the name of the variable andy with

the reference operator (&) we are no longer talking about the content of the variable itself, but about its reference

(i.e., its address in memory).

From now on we are going to assume that andy is placed during runtime in the memory address 1776. This

number (1776) is just an arbitrary assumption we are inventing right now in order to help clarify some concepts in

this tutorial, but in reality, we cannot know before runtime the real value the address of a variable will have in
memory.

Consider the following code fragment:

1

2

3

andy = 25;

fred = andy;

ted = &andy;

The values contained in each variable after the execution of this, are shown in the following diagram:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 36 of 69

First, we have assigned the value 25 to andy (a variable whose address in memory we have assumed to be 1776).

The second statement copied to fred the content of variable andy (which is 25). This is a standard assignment

operation, as we have done so many times before.

Finally, the third statement copies to ted not the value contained in andy but a reference to it (i.e., its address,

which we have assumed to be 1776). The reason is that in this third assignment operation we have preceded the

identifier andy with the reference operator (&), so we were no longer referring to the value of andy but to its

reference (its address in memory).

The variable that stores the reference to another variable (like ted in the previous example) is what we call

apointer. Pointers are a very powerful feature of the C++ language that has many uses in advanced programming.
Farther ahead, we will see how this type of variable is used and declared.

2.9.2 Dereference operator (*)

We have just seen that a variable which stores a reference to another variable is called a pointer. Pointers are said
to "point to" the variable whose reference they store.

Using a pointer we can directly access the value stored in the variable which it points to. To do this, we simply
have to precede the pointer's identifier with an asterisk (*), which acts as dereference operator and that can be
literally translated to "value pointed by".

Therefore, following with the values of the previous example, if we write:

 beth = *ted;

(that we could read as: "beth equal to value pointed by ted") beth would take the value 25, since ted is 1776,

and the value pointed by 1776 is 25.

You must clearly differentiate that the expression ted refers to the value 1776, while *ted (with an

asterisk *preceding the identifier) refers to the value stored at address 1776, which in this case is 25. Notice the

difference of including or not including the dereference operator (I have included an explanatory commentary of
how each of these two expressions could be read):

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 37 of 69

1

2

beth = ted; // beth equal to ted (1776)

beth = *ted; // beth equal to value pointed by ted (25)

Notice the difference between the reference and dereference operators:

 & is the reference operator and can be read as "address of"

 * is the dereference operator and can be read as "value pointed by"

Thus, they have complementary (or opposite) meanings. A variable referenced with & can be dereferenced with *.

Earlier we performed the following two assignment operations:

1

2

andy = 25;

ted = &andy;

Right after these two statements, all of the following expressions would give true as result:

1

2

3

4

andy == 25

&andy == 1776

ted == 1776

*ted == 25

The first expression is quite clear considering that the assignment operation performed on andy was andy=25. The

second one uses the reference operator (&), which returns the address of variable andy, which we assumed it to

have a value of 1776. The third one is somewhat obvious since the second expression was true and the

assignment operation performed on ted was ted=&andy. The fourth expression uses the dereference operator (*)

that, as we have just seen, can be read as "value pointed by", and the value pointed by ted is indeed 25.

So, after all that, you may also infer that for as long as the address pointed by ted remains unchanged the

following expression will also be true:

 *ted == andy

2.9.3 Declaring variables of pointer types
Due to the ability of a pointer to directly refer to the value that it points to, it becomes necessary to specify in its

declaration which data type a pointer is going to point to. It is not the same thing to point to a char as to point to

an int or a float.

The declaration of pointers follows this format:

type * name;

where type is the data type of the value that the pointer is intended to point to. This type is not the type of the

pointer itself! but the type of the data the pointer points to. For example:

1

2

3

int * number;

char * character;

float * greatnumber;

These are three declarations of pointers. Each one is intended to point to a different data type, but in fact all of
them are pointers and all of them will occupy the same amount of space in memory (the size in memory of a

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 38 of 69

pointer depends on the platform where the code is going to run). Nevertheless, the data to which they point to do
not occupy the same amount of space nor are of the same type: the first one points to an int, the second one to

achar and the last one to a float. Therefore, although these three example variables are all of them pointers

which occupy the same size in memory, they are said to have different
types: int*, char* and float* respectively, depending on the type they point to.

I want to emphasize that the asterisk sign (*) that we use when declaring a pointer only means that it is a pointer

(it is part of its type compound specifier), and should not be confused with the dereference operator that we have
seen a bit earlier, but which is also written with an asterisk (*). They are simply two different things represented

with the same sign.

Now have a look at this code:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// my first pointer

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue, secondvalue;

 int * mypointer;

 mypointer = &firstvalue;

 *mypointer = 10;

 mypointer = &secondvalue;

 *mypointer = 20;

 cout << "firstvalue is " << firstvalue <<

endl;

 cout << "secondvalue is " << secondvalue

<< endl;

 return 0;

}

firstvalue is 10

secondvalue is 20

Notice that even though we have never directly set a value to either firstvalue or secondvalue, both end up

with a value set indirectly through the use of mypointer. This is the procedure:

First, we have assigned as value of mypointer a reference to firstvalue using the reference operator (&). And

then we have assigned the value 10 to the memory location pointed by mypointer, that because at this moment is

pointing to the memory location of firstvalue, this in fact modifies the value of firstvalue.

In order to demonstrate that a pointer may take several different values during the same program I have repeated

the process with secondvalue and that same pointer, mypointer.

Here is an example a little bit more elaborated:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// more pointers

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue = 5, secondvalue = 15;

 int * p1, * p2;

 p1 = &firstvalue; // p1 = address of firstvalue

 p2 = &secondvalue; // p2 = address of secondvalue

 *p1 = 10; // value pointed by p1 = 10

 *p2 = *p1; // value pointed by p2 = value

pointed by p1

 p1 = p2; // p1 = p2 (value of pointer is

firstvalue is 10

secondvalue is 20

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 39 of 69

16

17

18

19

20

copied)

 *p1 = 20; // value pointed by p1 = 20

 cout << "firstvalue is " << firstvalue << endl;

 cout << "secondvalue is " << secondvalue << endl;

 return 0;

}

I have included as a comment on each line how the code can be read: ampersand (&) as "address of" and asterisk

(*) as "value pointed by".

Notice that there are expressions with pointers p1 and p2, both with and without dereference operator (*). The

meaning of an expression using the dereference operator (*) is very different from one that does not: When this

operator precedes the pointer name, the expression refers to the value being pointed, while when a pointer name

appears without this operator, it refers to the value of the pointer itself (i.e. the address of what the pointer is
pointing to).

Another thing that may call your attention is the line:

 int * p1, * p2;

This declares the two pointers used in the previous example. But notice that there is an asterisk (*) for each

pointer, in order for both to have type int* (pointer to int).

Otherwise, the type for the second variable declared in that line would have been int (and not int*) because of

precedence relationships. If we had written:

 int * p1, p2;

p1 would indeed have int* type, but p2 would have type int (spaces do not matter at all for this purpose). This is

due to operator precedence rules. But anyway, simply remembering that you have to put one asterisk per pointer

is enough for most pointer users.

2.9.4 Pointers and arrays
The concept of array is very much bound to the one of pointer. In fact, the identifier of an array is equivalent to

the address of its first element, as a pointer is equivalent to the address of the first element that it points to, so in
fact they are the same concept. For example, supposing these two declarations:

1

2

int numbers [20];

int * p;

The following assignment operation would be valid:

 p = numbers;

After that, p and numbers would be equivalent and would have the same properties. The only difference is that we

could change the value of pointer p by another one, whereas numbers will always point to the first of the 20

elements of type int with which it was defined. Therefore, unlike p, which is an ordinary pointer, numbers is an

array, and an array can be considered a constant pointer. Therefore, the following allocation would not be valid:

 numbers = p;

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 40 of 69

Because numbers is an array, so it operates as a constant pointer, and we cannot assign values to constants.

Due to the characteristics of variables, all expressions that include pointers in the following example are perfectly
valid:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// more pointers

#include <iostream>

using namespace std;

int main ()

{

 int numbers[5];

 int * p;

 p = numbers; *p = 10;

 p++; *p = 20;

 p = &numbers[2]; *p = 30;

 p = numbers + 3; *p = 40;

 p = numbers; *(p+4) = 50;

 for (int n=0; n<5; n++)

 cout << numbers[n] << ", ";

 return 0;

}

10, 20, 30, 40, 50,

In the chapter about arrays we used brackets ([]) several times in order to specify the index of an element of the

array to which we wanted to refer. Well, these bracket sign operators [] are also a dereference operator known

as offset operator. They dereference the variable they follow just as * does, but they also add the number

between brackets to the address being dereferenced. For example:

1

2

a[5] = 0; // a [offset of 5] = 0

*(a+5) = 0; // pointed by (a+5) = 0

These two expressions are equivalent and valid both if a is a pointer or if a is an array.

2.9.5 Pointer initialization
When declaring pointers we may want to explicitly specify which variable we want them to point to:

1

2

int number;

int *tommy = &number;

The behavior of this code is equivalent to:

1

2

3

int number;

int *tommy;

tommy = &number;

When a pointer initialization takes place we are always assigning the reference value to where the pointer points

(tommy), never the value being pointed (*tommy). You must consider that at the moment of declaring a pointer,

the asterisk (*) indicates only that it is a pointer, it is not the dereference operator (although both use the same

sign: *). Remember, they are two different functions of one sign. Thus, we must take care not to confuse the
previous code with:

1 int number;

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 41 of 69

2

3

int *tommy;

*tommy = &number;

that is incorrect, and anyway would not have much sense in this case if you think about it.

As in the case of arrays, the compiler allows the special case that we want to initialize the content at which the

pointer points with constants at the same moment the pointer is declared:

 const char * terry = "hello";

In this case, memory space is reserved to contain "hello" and then a pointer to the first character of this memory

block is assigned to terry. If we imagine that "hello" is stored at the memory locations that start at addresses

1702, we can represent the previous declaration as:

It is important to indicate that terry contains the value 1702, and not 'h' nor "hello", although 1702 indeed is

the address of both of these.

The pointer terry points to a sequence of characters and can be read as if it was an array (remember that an

array is just like a constant pointer). For example, we can access the fifth element of the array with any of these
two expression:

1

2

*(terry+4)

terry[4]

Both expressions have a value of 'o' (the fifth element of the array).

2.9.6 Pointer arithmetics

To conduct arithmetical operations on pointers is a little different than to conduct them on regular integer data
types. To begin with, only addition and subtraction operations are allowed to be conducted with them, the others
make no sense in the world of pointers. But both addition and subtraction have a different behavior with pointers
according to the size of the data type to which they point.

When we saw the different fundamental data types, we saw that some occupy more or less space than others in
the memory. For example, let's assume that in a given compiler for a specific machine, char takes 1

byte, shorttakes 2 bytes and long takes 4.

Suppose that we define three pointers in this compiler:

1

2

3

char *mychar;

short *myshort;

long *mylong;

and that we know that they point to memory locations 1000, 2000 and 3000 respectively.

So if we write:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 42 of 69

1

2

3

mychar++;

myshort++;

mylong++;

mychar, as you may expect, would contain the value 1001. But not so obviously, myshort would contain the

value2002, and mylong would contain 3004, even though they have each been increased only once. The reason is

that when adding one to a pointer we are making it to point to the following element of the same type with which

it has been defined, and therefore the size in bytes of the type pointed is added to the pointer.

This is applicable both when adding and subtracting any number to a pointer. It would happen exactly the same if
we write:

1

2

3

mychar = mychar + 1;

myshort = myshort + 1;

mylong = mylong + 1;

Both the increase (++) and decrease (--) operators have greater operator precedence than the dereference

operator (*), but both have a special behavior when used as suffix (the expression is evaluated with the value it

had before being increased). Therefore, the following expression may lead to confusion:

 *p++

Because ++ has greater precedence than *, this expression is equivalent to *(p++). Therefore, what it does is to

increase the value of p (so it now points to the next element), but because ++ is used as postfix the whole
expression is evaluated as the value pointed by the original reference (the address the pointer pointed to before
being increased).

Notice the difference with:

(*p)++

Here, the expression would have been evaluated as the value pointed by p increased by one. The value of p (the

pointer itself) would not be modified (what is being modified is what it is being pointed to by this pointer).

If we write:

 *p++ = *q++;

Because ++ has a higher precedence than *, both p and q are increased, but because both increase operators (++)

are used as postfix and not prefix, the value assigned to *p is *q before both p and q are increased. And then

both are increased. It would be roughly equivalent to:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 43 of 69

1

2

3

*p = *q;

++p;

++q;

Like always, I recommend you to use parentheses () in order to avoid unexpected results and to give more

legibility to the code.

2.9.7 Pointers to pointers
C++ allows the use of pointers that point to pointers, that these, in its turn, point to data (or even to other
pointers). In order to do that, we only need to add an asterisk (*) for each level of reference in their declarations:

1

2

3

4

5

6

char a;

char * b;

char ** c;

a = 'z';

b = &a;

c = &b;

This, supposing the randomly chosen memory locations for each variable of 7230, 8092 and 10502, could be

represented as:

The value of each variable is written inside each cell; under the cells are their respective addresses in memory.

The new thing in this example is variable c, which can be used in three different levels of indirection, each one of

them would correspond to a different value:

 c has type char** and a value of 8092

 c has type char and a value of 7230

 **c has type char and a value of 'z'

2.9.8 void pointers
The void type of pointer is a special type of pointer. In C++, void represents the absence of type, so void

pointers are pointers that point to a value that has no type (and thus also an undetermined length and
undetermined dereference properties).

This allows void pointers to point to any data type, from an integer value or a float to a string of characters. But in
exchange they have a great limitation: the data pointed by them cannot be directly dereferenced (which is logical,

since we have no type to dereference to), and for that reason we will always have to cast the address in the void
pointer to some other pointer type that points to a concrete data type before dereferencing it.

One of its uses may be to pass generic parameters to a function:

1

2

// increaser

#include <iostream>

y, 1603

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 44 of 69

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

using namespace std;

void increase (void* data, int psize)

{

 if (psize == sizeof(char))

 { char* pchar; pchar=(char*)data;

++(*pchar); }

 else if (psize == sizeof(int))

 { int* pint; pint=(int*)data; ++(*pint);

}

}

int main ()

{

 char a = 'x';

 int b = 1602;

 increase (&a,sizeof(a));

 increase (&b,sizeof(b));

 cout << a << ", " << b << endl;

 return 0;

}

sizeof is an operator integrated in the C++ language that returns the size in bytes of its parameter. For non-

dynamic data types this value is a constant. Therefore, for example, sizeof(char) is 1, because char type is one

byte long.

2.9.9 Null pointer
A null pointer is a regular pointer of any pointer type which has a special value that indicates that it is not pointing
to any valid reference or memory address. This value is the result of type-casting the integer value zero to any
pointer type.

1

2

int * p;

p = 0; // p has a null pointer value

Do not confuse null pointers with void pointers. A null pointer is a value that any pointer may take to represent
that it is pointing to "nowhere", while a void pointer is a special type of pointer that can point to somewhere
without a specific type. One refers to the value stored in the pointer itself and the other to the type of data it

points to.

2.9.10 Pointers to functions
C++ allows operations with pointers to functions. The typical use of this is for passing a function as an argument

to another function, since these cannot be passed dereferenced. In order to declare a pointer to a function we
have to declare it like the prototype of the function except that the name of the function is enclosed between
parentheses () and an asterisk (*) is inserted before the name:

1

2

3

4

5

6

7

8

9

// pointer to functions

#include <iostream>

using namespace std;

int addition (int a, int b)

{ return (a+b); }

int subtraction (int a, int b)

{ return (a-b); }

8

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 45 of 69

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

int operation (int x, int y, int

(*functocall)(int,int))

{

 int g;

 g = (*functocall)(x,y);

 return (g);

}

int main ()

{

 int m,n;

 int (*minus)(int,int) = subtraction;

 m = operation (7, 5, addition);

 n = operation (20, m, minus);

 cout <<n;

 return 0;

}

In the example, minus is a pointer to a function that has two parameters of type int. It is immediately assigned to

point to the function subtraction, all in a single line:

 int (* minus)(int,int) = subtraction;

2.10 Virtual Functions

A member of a class that can be redefined in its derived classes is known as a virtual
member. In order to declare a member of a class as virtual, we must precede its declaration

with the keyword virtual:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// virtual members

#include <iostream>

using namespace std;

class CPolygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b; }

 virtual int area ()

 { return (0); }

 };

class CRectangle: public CPolygon {

 public:

 int area ()

 { return (width * height); }

 };

class CTriangle: public CPolygon {

 public:

 int area ()

20

10

0

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 46 of 69

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

 { return (width * height / 2); }

 };

int main () {

 CRectangle rect;

 CTriangle trgl;

 CPolygon poly;

 CPolygon * ppoly1 = ▭

 CPolygon * ppoly2 = &trgl;

 CPolygon * ppoly3 = &poly;

 ppoly1->set_values (4,5);

 ppoly2->set_values (4,5);

 ppoly3->set_values (4,5);

 cout << ppoly1->area() << endl;

 cout << ppoly2->area() << endl;

 cout << ppoly3->area() << endl;

 return 0;

}

Now the three classes (CPolygon, CRectangle and CTriangle) have all the same

members: width, height,set_values() and area().

The member function area() has been declared as virtual in the base class because it is later

redefined in each derived class. You can verify if you want that if you remove

this virtual keyword from the declaration of area()within CPolygon, and then you run the

program the result will be 0 for the three polygons instead of 20, 10 and 0. That is because

instead of calling the corresponding area() function for each object

(CRectangle::area(),CTriangle::area() and CPolygon::area(),

respectively), CPolygon::area() will be called in all cases since the calls are via a pointer

whose type is CPolygon*.

Therefore, what the virtual keyword does is to allow a member of a derived class with the

same name as one in the base class to be appropriately called from a pointer, and more
precisely when the type of the pointer is a pointer to the base class but is pointing to an

object of the derived class, as in the above example.

A class that declares or inherits a virtual function is called a polymorphic class.

Note that despite of its virtuality, we have also been able to declare an object of

type CPolygon and to call its ownarea() function, which always returns 0.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 47 of 69

2.10.1 Inheritance between classes
A key feature of C++ classes is inheritance. Inheritance allows to create classes which are
derived from other classes, so that they automatically include some of its "parent's"

members, plus its own. For example, we are going to suppose that we want to declare a

series of classes that describe polygons like our CRectangle, or likeCTriangle. They have

certain common properties, such as both can be described by means of only two sides: height
and base.

This could be represented in the world of classes with a class CPolygon from which we would

derive the two other ones: CRectangle and CTriangle.

The class CPolygon would contain members that are common for both types of polygon. In

our case: width andheight. And CRectangle and CTriangle would be its derived classes,

with specific features that are different from one type of polygon to the other.

Classes that are derived from others inherit all the accessible members of the base class.

That means that if a base class includes a member A and we derive it to another class with

another member called B, the derived class will contain both members A and B.

In order to derive a class from another, we use a colon (:) in the declaration of the derived

class using the following format:

class derived_class_name: public base_class_name

{ /*...*/ };

Where derived_class_name is the name of the derived class and base_class_name is the

name of the class on which it is based. The public access specifier may be replaced by any

one of the other access specifiers protected andprivate. This access specifier limits the

most accessible level for the members inherited from the base class: The members with a

more accessible level are inherited with this level instead, while the members with an equal
or more restrictive access level keep their restrictive level in the derived class.

1

2

3

4

5

6

7

8

9

10

11

12

// derived classes

#include <iostream>

using namespace std;

class CPolygon {

 protected:

 int width, height;

 public:

 void set_values (int a, int b)

 { width=a; height=b;}

 };

20

10

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 48 of 69

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

class CRectangle: public CPolygon {

 public:

 int area ()

 { return (width * height); }

 };

class CTriangle: public CPolygon {

 public:

 int area ()

 { return (width * height / 2); }

 };

int main () {

 CRectangle rect;

 CTriangle trgl;

 rect.set_values (4,5);

 trgl.set_values (4,5);

 cout << rect.area() << endl;

 cout << trgl.area() << endl;

 return 0;

}

The objects of the classes CRectangle and CTriangle each contain members inherited

from CPolygon. These are:width, height and set_values().

The protected access specifier is similar to private. Its only difference occurs in fact with

inheritance. When a class inherits from another one, the members of the derived class can
access the protected members inherited from the base class, but not its private members.

Since we wanted width and height to be accessible from members of the derived

classes CRectangle andCTriangle and not only by members of CPolygon, we have

used protected access instead of private.

We can summarize the different access types according to who can access them in the
following way:

Access public protected private

members of the same class yes yes yes

members of derived classes yes yes no

not members yes no no

Where "not members" represent any access from outside the class, such as from main(),

from another class or from a function.

In our example, the members inherited by CRectangle and CTriangle have the same access

permissions as they had in their base class CPolygon:

1 CPolygon::width // protected access

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 49 of 69

2

3

4

5

CRectangle::width // protected access

CPolygon::set_values() // public access

CRectangle::set_values() // public access

This is because we have used the public keyword to define the inheritance relationship on

each of the derived classes:

 class CRectangle: public CPolygon { ... }

This public keyword after the colon (:) denotes the most accessible level the members

inherited from the class that follows it (in this case CPolygon) will have. Since public is the

most accessible level, by specifying this keyword the derived class will inherit all the
members with the same levels they had in the base class.

If we specify a more restrictive access level like protected, all public members of the base

class are inherited as protected in the derived class. Whereas if we specify the most

restricting of all access levels: private, all the base class members are inherited as private.

For example, if daughter was a class derived from mother that we defined as:

 class daughter: protected mother;

This would set protected as the maximum access level for the members of daughter that it

inherited from mother. That is, all members that were public in mother would become

protected in daughter. Of course, this would not restrict daughter to declare its own public

members. That maximum access level is only set for the members inherited from mother.

If we do not explicitly specify any access level for the inheritance, the compiler assumes

private for classes declared with class keyword and public for those declared with struct.

2.11 Polymorphism

The word polymorphism means having many forms. Typically, polymorphism occurs when there is a
hierarchy of classes and they are related by inheritance.

C++ polymorphism means that a call to a member function will cause a different function to be executed
depending on the type of object that invokes the function.

Consider the following example where a base class has been derived by other two classes:

#include <iostream>

using namespace std;

class Shape {

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 50 of 69

 protected:

 int width, height;

 public:

 Shape(int a=0, int b=0)

 {

 width = a;

 height = b;

 }

 int area()

 {

 cout << "Parent class area :" <<endl;

 return 0;

 }

};

class Rectangle: public Shape{

 public:

 Rectangle(int a=0, int b=0)

 {

 Shape(a, b);

 }

 int area ()

 {

 cout << "Rectangle class area :" <<endl;

 return (width * height);

 }

};

class Triangle: public Shape{

 public:

 Triangle(int a=0, int b=0)

 {

 Shape(a, b);

 }

 int area ()

 {

 cout << "Rectangle class area :" <<endl;

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 51 of 69

 return (width * height / 2);

 }

};

// Main function for the program

int main()

{

 Shape *shape;

 Rectangle rec(10,7);

 Triangle tri(10,5);

 // store the address of Rectangle

 shape = &rec;

 // call rectangle area.

 shape->area();

 // store the address of Triangle

 shape = &tri;

 // call triangle area.

 shape->area();

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Parent class area

Parent class area

The reason for the incorrect output is that the call of the function area() is being set once by the compiler as
the version defined in the base class. This is called static resolution of the function call, orstatic linkage -
the function call is fixed before the program is executed. This is also sometimes calledearly
binding because the area() function is set during the compilation of the program.
But now, let's make a slight modification in our program and precede the declaration of area() in the Shape
class with the keyword virtual so that it looks like this:

class Shape {

 protected:

 int width, height;

 public:

 Shape(int a=0, int b=0)

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 52 of 69

 {

 width = a;

 height = b;

 }

 virtual int area()

 {

 cout << "Parent class area :" <<endl;

 return 0;

 }

};

After this slight modification, when the previous example code is compiled and executed, it produces the
following result:

Rectangle class area

Triangle class area

This time, the compiler looks at the contents of the pointer instead of it's type. Hence, since addresses of
objects of tri and rec classes are stored in *shape the respective area() function is called.

As you can see, each of the child classes has a separate implementation for the function area(). This is
how polymorphism is generally used. You have different classes with a function of the same name, and
even the same parameters, but with different implementations.

2.12 Working with files

C++ provides the following classes to perform output and input of characters to/from files:

 ofstream: Stream class to write on files
 ifstream: Stream class to read from files
 fstream: Stream class to both read and write from/to files.

These classes are derived directly or indirectly from the classes istream, and ostream. We

have already used objects whose types were these classes: cin is an object of

class istream and cout is an object of class ostream. Therefore, we have already been using

classes that are related to our file streams. And in fact, we can use our file streams the same

way we are already used to use cin and cout, with the only difference that we have to

associate these streams with physical files. Let's see an example:

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 53 of 69

1

2

3

4

5

6

7

8

9

10

11

12

// basic file operations

#include <iostream>

#include <fstream>

using namespace std;

int main () {

 ofstream myfile;

 myfile.open ("example.txt");

 myfile << "Writing this to a

file.\n";

 myfile.close();

 return 0;

}

[file example.txt]

Writing this to a file.

This code creates a file called example.txt and inserts a sentence into it in the same way we

are used to do withcout, but using the file stream myfile instead.

But let's go step by step:

Open a file

The first operation generally performed on an object of one of these classes is to associate it

to a real file. This procedure is known as to open a file. An open file is represented within a
program by a stream object (an instantiation of one of these classes, in the previous example

this was myfile) and any input or output operation performed on this stream object will be

applied to the physical file associated to it.

In order to open a file with a stream object we use its member function open():

open (filename, mode);

Where filename is a null-terminated character sequence of type const char * (the same

type that string literals have) representing the name of the file to be opened, and mode is an

optional parameter with a combination of the following flags:

ios::in Open for input operations.

ios::out Open for output operations.

ios::binary Open in binary mode.

ios::ate
Set the initial position at the end of the file.

If this flag is not set to any value, the initial position is the beginning of the file.

ios::app All output operations are performed at the end of the file, appending the content

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 54 of 69

to the current content of the file. This flag can only be used in streams open for

output-only operations.

ios::trunc
If the file opened for output operations already existed before, its previous

content is deleted and replaced by the new one.

All these flags can be combined using the bitwise operator OR (|). For example, if we want to

open the fileexample.bin in binary mode to add data we could do it by the following call to

member function open():

1

2

ofstream myfile;

myfile.open ("example.bin", ios::out | ios::app | ios::binary);

Each one of the open() member functions of the

classes ofstream, ifstream and fstream has a default mode that is used if the file is opened

without a second argument:

class default mode parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstream and ofstream classes, ios::in and ios::out are automatically and

respectively assumed, even if a mode that does not include them is passed as second

argument to the open() member function.

The default value is only applied if the function is called without specifying any value for the

mode parameter. If the function is called with any value in that parameter the default mode
is overridden, not combined.

File streams opened in binary mode perform input and output operations independently of
any format considerations. Non-binary files are known as text files, and some translations

may occur due to formatting of some special characters (like newline and carriage return
characters).

Since the first task that is performed on a file stream object is generally to open a file, these

three classes include a constructor that automatically calls the open() member function and

has the exact same parameters as this member. Therefore, we could also have declared the

previous myfile object and conducted the same opening operation in our previous example

by writing:

 ofstream myfile ("example.bin", ios::out | ios::app | ios::binary);

Combining object construction and stream opening in a single statement. Both forms to open

a file are valid and equivalent.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 55 of 69

To check if a file stream was successful opening a file, you can do it by calling to

member is_open() with no arguments. This member function returns a bool value of true in

the case that indeed the stream object is associated with an open file, or false otherwise:

 if (myfile.is_open()) { /* ok, proceed with output */ }

Closing a file

When we are finished with our input and output operations on a file we shall close it so that

its resources become available again. In order to do that we have to call the stream's

member function close(). This member function takes no parameters, and what it does is to

flush the associated buffers and close the file:

 myfile.close();

Once this member function is called, the stream object can be used to open another file, and

the file is available again to be opened by other processes.

In case that an object is destructed while still associated with an open file, the destructor

automatically calls the member function close().

Text files

Text file streams are those where we do not include the ios::binary flag in their opening

mode. These files are designed to store text and thus all values that we input or output
from/to them can suffer some formatting transformations, which do not necessarily
correspond to their literal binary value.

Data output operations on text files are performed in the same way we operated with cout:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// writing on a text file

#include <iostream>

#include <fstream>

using namespace std;

int main () {

 ofstream myfile ("example.txt");

 if (myfile.is_open())

 {

 myfile << "This is a line.\n";

 myfile << "This is another

line.\n";

 myfile.close();

 }

[file example.txt]

This is a line.

This is another line.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 56 of 69

15

16

 else cout << "Unable to open

file";

 return 0;

}

Data input from a file can also be performed in the same way that we did with cin:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

// reading a text file

#include <iostream>

#include <fstream>

#include <string>

using namespace std;

int main () {

 string line;

 ifstream myfile ("example.txt");

 if (myfile.is_open())

 {

 while (getline (myfile,line))

 {

 cout << line << endl;

 }

 myfile.close();

 }

 else cout << "Unable to open

file";

 return 0;

}

This is a line.

This is another line.

This last example reads a text file and prints out its content on the screen. We have created a

while loop that reads the file line by line, using getline. The value returned by getline is a

reference to the stream object itself, which when evaluated as a boolean expression (as in

this while-loop) is true if the stream is ready for more operations, and false if either the end
of the file has been reached or if some other error occurred.

2.13 Templates

C++ Class Templates are used where we have multiple copies of code for different data types with

the same logic. If a set of functions or classes have the same functionality for different data types,

they becomes good candidates for being written as Templates.

One good area where this C++ Class Templates are suited can be container classes.

http://www.cplusplus.com/getline
http://www.cplusplus.com/getline

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 57 of 69

2.13.1 Class templates

C++ Class Templates are used where we have multiple copies of code for different data types with

the same logic. If a set of functions or classes have the same functionality for different data types,

they becomes good candidates for being written as Templates.

One good area where this C++ Class Templates are suited can be container classes.

Declaring C++ Class Templates:

Declaration of C++ class template should start with the keyword template. A parameter should be

included inside angular brackets. The parameter inside the angular brackets, can be either the

keyword class or typename. This is followed by the class body declaration with the member data

and member functions. The following is the declaration for a sample Queue class.

//Sample code snippet for C++ Class Template

template <typename T>

class MyQueue

{

 std::vector<T> data;

 public:

 void Add(T const &d);

 void Remove();

 void Print();

};

Defining member functions –

If the functions are defined outside the template class body, they should always be defined with

the full template definition. Other conventions of writing the function in C++ class templates are the

same as writing normal c++ functions.

template <typename T> void MyQueue<T> ::Add(T const &d)

{

 data.push_back(d);

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 58 of 69

}

template <typename T> void MyQueue<T>::Remove()

{

data.erase(data.begin() + 0,data.begin() + 1);

}

template <typename T> void MyQueue<T>::Print()

{

 std::vector <int>::iterator It1;

 It1 = data.begin();

 for (It1 = data.begin() ; It1 != data.end() ; It1++)

 cout << " " << *It1<<endl;

}

The Add function adds the data to the end of the vector. The remove function removes the first

element. These functionalities make this C++ class Template behave like a normal Queue. The

print function prints all the data using the iterator.

Full Program – C++ Class Templates:

//C++_Class_Templates.cpp

#include <iostream.h>

#include <vector>

template <typename T>

class MyQueue

{

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 59 of 69

std::vector<T> data;

public:

void Add(T const &);

void Remove();

void Print();

};

template <typename T> void MyQueue<T> ::Add(T const &d)

{

data.push_back(d);

}

template <typename T> void MyQueue<T>::Remove()

{

data.erase(data.begin() + 0,data.begin() + 1);

}

template <typename T> void MyQueue<T>::Print()

{

std::vector <int>::iterator It1;

It1 = data.begin();

for (It1 = data.begin() ; It1 != data.end() ; It1++)

cout << " " << *It1<<endl;

}

//Usage for C++ class templates

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 60 of 69

void main()

{

MyQueue<int> q;

q.Add(1);

q.Add(2);

cout<<"Before removing data"<<endl;

q.Print();

q.Remove();

cout<<"After removing data"<<endl;

q.Print();

}

Advantages of C++ Class Templates:

 One C++ Class Template can handle different types of parameters.

 Compiler generates classes for only the used types. If the template is instantiated for int type, compiler

generates only an int version for the c++ template class.

 Templates reduce the effort on coding for different data types to a single set of code.

 Testing and debugging efforts are reduced.

2.13.2 Function templates
Function templates are implemented like regular functions, except they are prefixed with the

keyword template. Here is a sample with a function template.

#include <iostream>

using namespace std ;

//max returns the maximum of the two elements

template <class T>

T max(T a, T b)

{

 return a > b ? a : b ;

}

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 61 of 69

Using Template Functions

Using function templates is very easy: just use them like regular functions. When the compiler

sees an instantiation of the function template, for example: the call max(10, 15) in function

main, the compiler generates a function max(int, int). Similarly the compiler generates

definitions for max(char, char) and max(float, float) in this case.

#include <iostream>

using namespace std ;

//max returns the maximum of the two elements

template <class T>

T max(T a, T b)

{

 return a > b ? a : b ;

}

void main()

{

 cout << "max(10, 15) = " << max(10, 15) << endl ;

 cout << "max('k', 's') = " << max('k', 's') << endl ;

 cout << "max(10.1, 15.2) = " << max(10.1, 15.2) << endl ;

}

Program Output

max(10, 15) = 15

max('k', 's') = s

max(10.1, 15.2) = 15.2

2.14 Exception handling

Exceptions are errors that occur at runtime. They are caused by a wide variety of
exceptional circumstance, such as running out of memory, not being able to open a file,
trying to initialize an object to an impossible value, or using an out-of-bounds index to a
vector.
Exceptions provide a way to react to exceptional circumstances (like runtime errors) in our

program by transferring control to special functions called handlers.

To catch exceptions we must place a portion of code under exception inspection. This is done
by enclosing that portion of code in a try block. When an exceptional circumstance arises
within that block, an exception is thrown that transfers the control to the exception handler.

If no exception is thrown, the code continues normally and all handlers are ignored.

An exception is thrown by using the throw keyword from inside the try block. Exception

handlers are declared with the keyword catch, which must be placed immediately after the

try block:

1

2

3

4

// exceptions

#include <iostream>

using namespace std;

An exception occurred.

Exception Nr. 20

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 62 of 69

5

6

7

8

9

10

11

12

13

14

15

int main () {

 try

 {

 throw 20;

 }

 catch (int e)

 {

 cout << "An exception occurred.

Exception Nr. " << e << endl;

 }

 return 0;

}

The code under exception handling is enclosed in a try block. In this example this code

simply throws an exception:

 throw 20;

A throw expression accepts one parameter (in this case the integer value 20), which is passed

as an argument to the exception handler.

The exception handler is declared with the catch keyword. As you can see, it follows

immediately the closing brace of the try block. The catch format is similar to a regular

function that always has at least one parameter. The type of this parameter is very
important, since the type of the argument passed by the throw expression is checked against
it, and only in the case they match, the exception is caught.

2.15 string manipulation

C++ provides convenient and powerful tools to manipulate strings.

Strings and Basic String Operations

strings are not a built-in data type, but rather a Standard Library facility. Thus, whenever we want
to use strings or string manipulation tools, we must provide the appropriate #include directive,

as shown below:

#include <string>

using namespace std; // Or using std::string;

We now use string in a similar way as built-in data types, as shown in the example below,

declaring a variable name:

string name;

Unlike built-in data types (int, double, etc.), when we declare a string variable without

initialization (as in the example above), we do have the guarantee that the variable will be

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 63 of 69

initialized to an empty string — a string containing zero characters.

C++ strings allow you to directly initialize, assign, compare, and reassign with the intuitive
operators, as well as printing and reading (e.g., from the user), as shown in the example below:

string name;

cout << "Enter your name: " << flush;

cin >> name;

 // read string until the next separator

 // (space, newline, tab)

 // Or, alternatively:

getline (cin, name);

 // read a whole line into the string name

if (name == "")

{

 cout << "You entered an empty string, "

 << "assigning default\n";

 name = "John";

}

else

{

 cout << "Thank you, " << name

 << "for running this simple program!"

 << endl;

}

C++ strings also provide many string manipulation facilities. The simplest string manipulation that
we commonly use is concatenation, or addition of strings. In C++, we can use the + operator to

concatenate (or “add”) two strings, as shown below:

string result;

string s1 = "hello ";

string s2 = "world";

result = s1 + s2;

 // result now contains "hello world"

Notice that both s1 and s2 remain unchanged! The operation reads the values and produces a

result corresponding to the concatenated strings, but doesn't modify any of the two original strings.

The += operator can also be used. In that case, one string is appended to another one:

string result;

string s1 = "hello";

 // without the extra space at the end

string s2 = "world";

result = s1;

result += ' ';

 // append a space at the end

result += s2;

After execution of the above fragment, result contains the string "hello world".

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 64 of 69

You can also use two or more + operators to concatenate several (more than 2) strings. The

example below shows how to create a string that contains the full name from first name and last
name (e.g.,firstname = "John", lastname = "Smith", fullname = "Smith, John").

string firstname, lastname, fullname;

cout << "First name: ";

getline (cin, firstname);

cout << "Last name: ";

getline (cin, lastname);

fullname = lastname + ", " + firstname;

cout << "Fullname: " << fullname << endl;

Of course, we didn't need to do that; we could have printed it with several << operators to

concatenate to the output. The example intends to illustrate the use of strings concatenation in
situations where you need to store the result, as opposed to simply print it.

Now, let's review this example to have the full name in format "SMITH, John". Since we can

only convert characters to upper case, and not strings, we have to handle the string one character
at a time. To do that, we use the square brackets, as if we were dealing with an array of
characters, or a vector of characters.

For example, we could convert the first character of a string to upper case with the following code:

str[0] = toupper (str[0]);

The function toupper is a Standard Library facility related to character processing; this means

that when using it, we have to include the <cctype> library header:

#include <cctype>

If we want to change all of them, we would need to know the length of the string. To this end,
strings have a method length, that tells us the length of the string (how many characters the

string has).

Thus, we could use that method to control a loop that allows us to convert all the characters to
upper case:

for (string::size_type i = 0; i < str.length(); i++)

{

 str[i] = toupper (str[i]);

}

Notice that the subscripts for the individual characters of a string start at zero, and go
from 0 tolength−1.

Notice also the data type for the subscript, string::size_type; it is recommended that you

always use this data type, provided by the string class, and adapted to the particular platform.

All string facilities use this data type to represent positions and lengths when dealing with strings.

The example of the full name is slightly different from the one shown above, since we only want to

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 65 of 69

change the first portion, corresponding to the last name, and we don't want to change the string
that holds the last name — only the portion of the full name corresponding to the last name. Thus,
we could do the following:

fullname = lastname + ", " + firstname;

for (string::size_type i = 0; i < lastname.length(); i++)

{

 fullname[i] = toupper (fullname[i]);

}

Search Facilities

Another useful tool when working with strings is the find method. This can be used to find the

position of a character in a string, or the position of a substring. For example, we could find the
position of the first space in a string as follows:

position = str.find (' ');

If the string does not contain any space characters, the result of the find method will be the
valuestring::npos. The example below illustrates the use of string::npos combined with

the findmethod:

if (str.find (' ') != string::npos)

{

 cout << "Contains at least one space!" << endl;

}

else

{

 cout << "Does not contain any spaces!" << endl;

}

The find methods returns the position of the first occurence of the given character

(orstring::npos). We also have the related rfind method — the r stands for reverse search;

in other words, rfind returns the position of the last occurence of the given character,

or string::npos. You could also look at it as the first occurence while starting the search at the

end of the string and moving backwards.

The find and rfind methods can also be used to find a substring; the following fragment of

code can be used to determine if the word "the" is contained in a given string:

string text;

getline (cin, text);

if (text.find ("the") != string::npos)

{

 // ...

For both cases (searching for a single character or searching for a substring), you can specify a
starting position for the search; in that case, the find method will tell the position of the first

occurrence of the search string or character after the position indicated; the rfind method will

return the position of the last occurence before the position inticated — you could look at it as the

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 66 of 69

first occurrence while moving backwards starting at the specified position. The requirement for this
optional parameter is that it must indicate a valid position within the string, which means that the
value must be between 0 and length−1

2.16 Translating object oriented design into

implementations

 when writing programs is the problem. Typically you are confronted with ``real-life'' problems

and you want to make life easier by providing a program for the problem. However, real-life

problems are nebulous and the first thing you have to do is to try to understand the problem to

separate necessary from unnecessary details: You try to obtain your own abstract view,

or model, of the problem. This process of modeling is called abstraction and is illustrated in

Figure :

Figure : Create a model from a problem with abstraction.

The model defines an abstract view to the problem. This implies that the model focusses only on

problem related stuff and that you try to define properties of the problem. These properties

include

 the data which are affected and
 the operations which are identified

by the problem.

As an example consider the administration of employees in an institution. The head of the

administration comes to you and ask you to create a program which allows to administer the

employees. Well, this is not very specific. For example, what employee information is needed

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 67 of 69

by the administration? What tasks should be allowed? Employees are real persons who can be

characterized with many properties; very few are:

 name,
 size,
 date of birth,
 shape,
 social number,
 room number,
 hair colour,
 hobbies.

Certainly not all of these properties are necessary to solve the administration problem. Only

some of them are problem specific. Consequently you create a model of an employee for the

problem. This model only implies properties which are needed to fulfill the requirements of the

administration, for instance name, date of birth and social number. These properties are called

the data of the (employee) model. Now you have described real persons with help of an abstract

employee.

Of course, the pure description is not enough. There must be some operations defined with

which the administration is able to handle the abstract employees. For example, there must be an

operation which allows you to create a new employee once a new person enters the institution.

Consequently, you have to identify the operations which should be able to be performed on an

abstract employee. You also decide to allow access to the employees' data only with associated

operations. This allows you to ensure that data elements are always in a proper state. For

example you are able to check if a provided date is valid.

To sum up, abstraction is the structuring of a nebulous problem into well-defined entities by

defining their data and operations. Consequently, these entities combine data and operations.

They are not decoupled from each other.

Large projects, say, a calendar program, should be split into manageable pieces, often
called modules. Modules are implemented in separate files and we will now briefly discuss how
modularization is done in C and C++. This discussion is based on UNIX and the GNU C++
compiler. If you are using other constellations the following might vary on your side. This is
especially important for those who are using integrated development environments (IDEs), for
example, Borland C++.

Roughly speaking, modules consist of two file types: interface descriptions and implementation

files. To distinguish these types, a set of suffixes are used when compiling C and C++ programs.

Table shows some of them.

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 68 of 69

Table 9.2: Extensions and file types.

Compilation Steps

Figure : Compilation steps.

With modern compilers both steps can be combined. For example, our small example programs

can be compiled and linked with the GNU C++ compiler as follows (``example.cc'' is just an

example name, of course):

 gcc example.cc

Assignments ECS-039 Object Oriented Systems & C++

Faculty: Diwakar Yagyasen Page 69 of 69

OOP

Term
Definition

method Same as function, but the typical OO notation is used for the call, ie, f(x,y) is written x.f(y)

where x is an object of class that contains this f method.

send a message Call a function (method)

instantiate Allocate a class/struct object (ie, instance) with new

class A struct with both data and functions

object Memory allocated to a class/struct. Often allocated with new.

member A field or function is a member of a class if it's defined in that class

constructor Function-like code that initializes new objects (structs) when they instantiated (allocated with

new).

destructor Function-like code that is called when an object is deleted to free any resources (eg, memory)

that is has pointers to.

inheritance Defining a class (child) in terms of another class (parent). All of the public members of the

public class are available in the child class.

polymorphism Defining functions with the same name, but different parameters.

overload A function is overloaded if there is more than one definition. See polymorphism.

override Redefine a function from a parent class in a child class.

subclass Same as child, derived, or inherited class.

superclass Same as parent or base class.

attribute Same as data member or member field.

	Principles or object oriented programming
	The Object-Oriented Approach
	Characteristics of Object-Oriented Languages

	C++ Getting Started
	Basic Program Construction
	C++ Language Fundamentals: Tokens, Expressions, Classes
	Tokens
	Expressions
	Classes

	Functions, Constructors, Destructors
	Functions

	Constructors
	Destructors
	Functions overloading
	Overloading operators

	Pointers
	Virtual Functions
	Polymorphism
	Working with files

