
Chapter 6VisibilityLet S be a set of n line segments in the plane (which may or may not intersect). We consider thesesegments as being opaque, which gives rise to the notion of visibility. We say that two points p andq are visible if the line segment from p to q intersects none of the given (opaque) segments.6.1 Visibility from a PointIn this section we consider the problem where the input set of line segments de�nes a simple polygonP , and we wish to determine the region in the interior of P that is visible from some distinguishedpoint p. We begin by triangulating the interior of P and identifying the triangle containing p. Wethen incrementaly consider the triangles adjacent to this starting triangle. Inductively, we assumethat we have determined the visibility from p to an edge e on the boundary of the triangle t we areabout to consider. Since P is simple, the visibility of e with respect to p is an interval e0 � e. Inconsidering the triangle t we extend the \cone" de�ned by p and the interval e0 into the triangle t.This de�nes new visible intervals on the other two edges of t, which, if they are not edges of P , wean then cross into additional triangles to consider. Since we can consider each triangle iteratively inthis way in O(1) time each, this implies that the total time for computing the visible region from pis O(n) plus the time to triangulate P , which can also be done in O(n) time using an algorithm ofChazelle.6.2 Upper EnvelopesThe above method does not easily generalize to the case when the input opaque segments do notform a simple polygon and possibly even intersect. In this case it is more natural to consider theconstruction of the visible region from a point p to be an upper envelope problem. In this generalframework we are given a collection F = ff1; f2; : : : ; fng of functions from R1 to R1. We de�ne theupper envelope of F to be the function f de�nedf(x) = maxfi2Fffi(x)g:In geometric settings it is quite common for the functions in F to possess a nices crossing propertywhere it is known that any two such functions cross at most k times. It is natural, then, to studythe algorithmic question of how one can e�ciently construct a representation of the upper envelopefunction f , as well as the combinatoric question of how large such a representation must be. Themost standard way of representing this function is as a list of intervals of R1 together with the theindices of the functions in F that realize the maximum in each interval.The crossing property de�ned above gives rise to a combinatorial notion de�ned on characterstrings caled the Davenport-Schinzel sequences. Such a sequence is de�ned by two parameters: n27



28 Chapter 6. Visibilityand k, where n is the number of characters and k is the maximum number of altnernations that canoccur between any two characters. That is, two characters a and b can occur in such a sequence as:::a:::b:::a:::b::: with the number of a's and b's is k+ 1, but there is no such subsequence of k +2 a'sand b's. In addition, no character is allowed to be repeated twice in a row. Letting �k(n) denotethe maximum length of a Davenport-Schinzel sequence with parameters n and k, it is one of themost interesting recent results of combinatorics that, for any �xed value of k � 3, that �k(n) isO(n log� n). This parameter is linear for smaller values of k.By a simple mergesort-like divide-and-conquer algorithm, then, we can construct the upperenvelope of F in O(�k(n) logn) time. For example, computing the upper envelope of a collectionof functions de�ned by line segments in the plane can be done in O(�3(n) logn) = O(n logn log� n)time. Equivalently, the region of the plane visible from a point can also be computed in this time.6.3 Visibility from an EdgeLet us now consider another type of visibility: weak visibility from an edge. In this context we arestill given a set of opaque segments, but instead of a point source of visibility we are now given anedge e. We say that a point q is weakly visible from e if there exists a point p on e such that p and qare visible. In this section we consider the problem of computing the region inside a simple polygonP that is weakly visible from a distinguished edge e on P .6.3.1 Centroid edgesBefore we describe how to e�ciently solve this problem we �rst discuss a seemingly unrelated prob-lem. In this problem one is given an n-node binary tree T and asked to �nd an edge e of T thatpartitions T into two subtrees T1 and T2 such that n=3 � jT1j; jT2j � 2n=3. This edge can be foundby a simple greedy process that determines the edge that minimizes the maximim size of the subtreesde�ned by removing that edge from T . To compute the size of each such subtree we can preprocesthe tree T by computing an Euler tour de�ned by \marching" around the outside of the tree as anembedded planar graph. If we assign the �rst visit of a vertex in this tour a +1 and each other visita 0, and then comput al the partial sums in this sequence, we can easily locate the centroid edge inO(n) time.6.3.2 Divide-and-conquer visibility from an edgeLet us return to the visibility from an edge problem. We begin our algorithm by triangulating P ,as in our point visibility algorithm. We note that if we exclude the exterior of P , then the graph-theoretic planar dual to this trianglation de�nes a binary tree T . Moreover, by locating the centroidedge f in this tree, we identify a diagonal (dual to this edge) that separates the polygon P intotwo subpolygons P1 and P2 each of size at most two-thirds the size of P . The idea is to recurseon each of P1 and P2. Of course, one of these subpolygons, say, P1, contains the distinguishededge e de�ning the visibility. For the polygon P2 we use the edge f for this role. But before wecan use recursion on P1 and P2 we must precisely de�ne the problem we are recursively solving.Speci�cally, we de�ne the problem as that of computing in the dual plane (under point-line duality)the subdivision de�ned by determining for each edge h of P the set of lines (represented as points inthe dual plane) that contain lines of sight from h to the distinguished edge. Given such subdivisionsfor P1 and P2, we note that if f is weakly visible from e, then there will be a region associatedwith f in the dual subdivision de�ning the visibility from e in P1. In this case we complete thealgorithm by \clipping" the subdivision de�ning the weak visibility from f in P2 to the region for fin the subdivision de�ning the weak visibility from e. This can be done in O(n) time and gives usa representation of the weak visibility from e of P . The total time for this algorithm is O(n logn).



6.4. The Visibility Graph 296.4 The Visibility GraphThis approach can also be used to construct the graph of all visibilities between pairs of vertices ina simple polygon P . The idea is to again determine a centroid diagonal edge f that separates Pinto subpolygons P1 and P2 each of size at most two-thirds that of P . We then recurse on P1 andP2, determining all the visibility pairs of vertices in each. What remains, then, is to compute all thevisibility pairs that cross from P1 to P2 through the edge f . To do this we compute the visibilitysubdivisions from f with repsect to P1 and P2, and then compute all the pairs of intersecting segmentsbetween these two subdivisions. Each such interesection corresponds (in the primal) to a line of sightbetween two vertices, one in P1 and the other in P2. Since we can compute all intersecting pairs inO((n + k) logn) time, where k is the number intersections, the total time for this computation isO(n log2 n+k logn). In fact, using the segment intersection algorithm of Chazelle and Edelsbrunner,we can reduce this to O(n log2 n+ k) total time.


